
Perforce 2009.1
Introducing Perforce

July 2009

This manual copyright 2005-2009 Perforce Software.

All rights reserved.

Perforce software and documentation is available from http://www.perforce.com. You may download and
use Perforce programs, but you may not sell or redistribute them. You may download, print, copy, edit, and
redistribute the documentation, but you may not sell it, or sell any documentation derived from it. You may not
modify or attempt to reverse engineer the programs.

Perforce programs and documents are available from our Web site as is. No warranty or support is provided.
Warranties and support, along with higher capacity servers, are sold by Perforce Software.

Perforce Software assumes no responsibility or liability for any errors or inaccuracies that may appear in this book.

By downloading and using our programs and documents you agree to these terms.

Perforce and Inter-File Branching are trademarks of Perforce Software. Perforce software includes software
developed by the University of California, Berkeley and its contributors.

All other brands or product names are trademarks or registered trademarks of their respective companies or
organizations.

http://www.perforce.com

Table of Contents
Introducing Perforce... 5
How Perforce Works ..5

The Perforce Server ..5
Perforce client programs ...6

Connecting to a server...7
Mapping files in the depot to your client workspace...........................7
Other configuration options...8

Working in Perforce..9
Getting files from the server ...9
Referring to files in Perforce ...10

Perforce syntax ...10
Using wildcards in views..11
Referring to specific revisions of files ...11
Perforce syntax and the status bar...12
What file types are supported? ..12

Working with files ..13
Using changelists ...13
How changelist numbers work..13
Editing files ...14
Adding new files..14
Deleting files ...14
Discarding unwanted changes...14
Checking in files...15
Resolving conflicts ...15
Working concurrently..16
Comparing files ..17
Reviewing change histories of individual files....................................17
Reviewing change histories of groups of files18
Perforce syntax and the status bar...18

Branching and integration...19
Creating a codeline...19
Propagating changes between codelines ..21
Resolving differences between codelines ...22
Duplicating complex branch structures..23
Tracking change history between codelines...24
Perforce 2009.1 Introducing Perforce 3

Table of Contents
To learn more about branching.. 24
Next steps.. 25

Work and defect tracking ... 25
Tagging files with labels ... 25
Editors and merge tools.. 26
Protections and permissions .. 26
Users and licenses.. 26
Where to learn more about Perforce ... 26
4 Perforce 2009.1 Introducing Perforce

Introducing Perforce
How Perforce Works

Perforce is a Software Configuration Management (SCM) system based on a client/server
architecture. Users of Perforce client programs connect to a Perforce server and use
Perforce client programs to transfer files between the server’s file repository and
individual client workstations.

This document assumes that your Perforce server is already installed, configured and
running. To set up a Perforce server, see the System Administrator’s Guide.

The Perforce Server

The Perforce server manages the master file repository, or depot. There can be more than
one depot per server. The depots contain every revision of every file under Perforce
control. Perforce organizes files in depots into directory trees, like a large hard drive. Files
in a depot are referred to as depot files or versioned files. The server maintains a database to
track change logs, user permissions, and which users have which files checked out at any
time. The information stored in this database is referred to as metadata.

Perforce
Server

P4 P4Win

IDEP4V

metadata

depot2depot1

versioned files
Perforce 2009.1 Introducing Perforce 5

How Perforce Works
Perforce servers use native operating system capabilities to manage the database and the
versioned files, and require no dedicated filesystems or volumes.

Perforce client programs

You use Perforce client programs to communicate with the Perforce server. Perforce client
programs enable you to check files in and out, manage conflicts, create development
branches, track bugs and change requests, and more. Perforce client programs include:

• P4, the Perforce Command-Line Client, for all platforms

• P4V, the Perforce Visual Client, for Mac OS X, UNIX, Linux, and Windows

• P4Web, the Perforce Web Client, a browser-based client

• Integrations, or plug-ins, that work with commercial IDEs and productivity software

Under Perforce, you never work directly on files in the depot. Instead, you use a Perforce
client program to manage a specially-designated area of your local workstation called a
client workspace. A client workspace contains a local copy of a portion of the depot.

When you retrieve files into a client workspace, your Perforce client program requests the
files from the Perforce server. To keep network traffic to a minimum, the Perforce server
keeps track of what files you (and other users) have retrieved. Perforce client programs do
not require a persistent connection to the Perforce server.

Perforce Server Client Workstation

Local drive

Client
Workspace

Depot
6 Perforce 2009.1 Introducing Perforce

How Perforce Works
To use Perforce, you must set up your Perforce client program to connect to your
organization’s Perforce server, tell your client program where your client workspace is
located on your local hard drive, and tell your client program what files from the depot
you plan to work with.

Connecting to a server

To work with Perforce, you must connect to a Perforce server. Your Perforce client
program communicates with Perforce servers over a TCP/IP connection. Each Perforce
client program needs to know the address and port of the Perforce server with which it
communicates.

The address and port are stored in the P4PORT environment variable; depending on the
Perforce client you are using, the process of configuring this variable is referred to as
“setting your port”, or “connecting to the server”.

The documentation and the online help for your client program contain information on
how to set your port. If you don’t know the port setting used for connecting to your
organization’s Perforce server, ask your Perforce administrator.

Mapping files in the depot to your client workspace

Perforce client programs manage files in a designated area of your local disk, called your
client workspace. Your client workspace is where you will be doing most of your work. You
can have more than one client workspace, even on the same computer. The top level
directory of any client workspace is called the client workspace root.

To control where the depot files appear under your client workspace root, you must map
the files and directories on the Perforce server to corresponding areas of your local hard
drive. These mappings constitute your client workspace view.

Client workspace views:

• Determine which files in the depot can appear in a client workspace.

• Map files in the depot to files in the client workspace.

Perforce Server

IP address: 192.168.0.10
machine name: p4dserv

Port Setting

P4PORT=192.168.0.10:1666
P4PORT=p4dserv:1666

listening on: port 1666
Perforce 2009.1 Introducing Perforce 7

How Perforce Works
Client workspace views consist of one or more lines, or mappings. Each line in your
workspace view has two sides: a “depot side” that designates a subset of files within the
depot and a “client side” that controls where the files specified on the depot side are
located under your client workspace root.

Creating a client workspace view doesn’t transfer any files from the server to your
computer. The view only sets up the mapping that controls the relationship between the
depot and your client workspace when files are transferred.

To learn more about how to set up the mappings that define your client workspace, see
the documentation and the online help for your Perforce client program.

Other configuration options

Other options for your Perforce client enable you to control the default behavior of
various operations within Perforce. For instance, you can control carriage return/linefeed
translation for cross-platform development, or select a preferred text editor or merge
utility for use within Perforce. To learn more about these and other options, see the
documentation for your particular Perforce client program.

Depot side

Client side
8 Perforce 2009.1 Introducing Perforce

Working in Perforce
Working in Perforce

Getting files from the server

The Perforce server manages the depot, an archive of every version of every file in the
system. Your client workspace has a client workspace view that maps a subset of the
depot’s files to an area of your computer.

To populate your client workspace with the depot files, you must retrieve them from the
server. In Perforce, updating your workspace with files from the server is often referred to
as syncing your workspace. Other systems call this “refreshing”, “getting the tip revision”,
or just “getting files”.

Syncing your workspace

When you sync your workspace, your Perforce client program uses your client workspace
view to map files in the depot to files in your client workspace, compares the result
against the contents of your client workspace, and then adds, updates, or deletes files in
your workspace as needed to bring your workspace contents in sync with the depot.

Syncing your workspace retrieves a copy of the latest (“head”) revision of each file. (Other
SCM systems might refer to this as the “tip” revision.)

Perforce client programs manage file permissions in your workspace. By default, files
synced to your workspace are read-only, and become writable when you check them out
for editing.

Perforce client programs also support options that enable you to retrieve earlier revisions
of files, or the revisions of files stored as of specified points in time, or sets of revisions
that other users have tagged, or labeled with a user-defined identifying label.

(workspace sync request)

depot files
in workspace

depot files
transferred
Perforce 2009.1 Introducing Perforce 9

Working in Perforce
Referring to files in Perforce

Perforce organizes files in the depot using directory hierarchies, like a large hard drive.
Perforce client programs use a set of rules that define the specification of files in the depot
and in your workspace. Whether you are setting up the mapping (the client workspace
view) between the depot and your workspace, loading your workspace with files from the
depot, or checking files in or out, these rules for referring to files are common across all
operating systems.

Perforce syntax

When you refer to files in Perforce, you can specify files relative to a client workspace root
(“client syntax”), or to the top of the depot tree (“depot syntax”), or by absolute and or
relative paths on your local file system (“local syntax”).

Files specified in client syntax or depot syntax always begin with two slashes (//),
followed by the client workspace or depot name, and the full pathname of the file, relative
to the client workspace root or top of the depot tree. Path components in client and depot
syntax are always separated by forward slashes (/), regardless of the component
separator used by the local operating system.

When mapping depot files to the local hard drive, the client workspace name is an alias
for the client workspace root.

For example, if the client workspace is named myworkspace, and the workspace root is
C:\Projects\working, then the mapping specified by the view

//depot/main/src/... //myworkspace/module/...

maps the depot file //depot/main/src/file.c into the client workspace as
C:\Projects\working\module\file.c.

Syntax Example

Depot syntax //depot/main/src/file.c

Client syntax //myworkspace/module/file.c

Local syntax C:\Projects\working\module\file.c

Workspace:

Root:

View:

Location:

myworkspace

C:\Projects\working\

//depot/main/src/... //myworkspace/module/...

C:\Projects\working\module\file.c
10 Perforce 2009.1 Introducing Perforce

Working in Perforce
Using wildcards in views

You can use these wildcards when configuring workspace views in Perforce.

These wildcards are also used when specifying files in the Command-Line Client. For
more about Perforce syntax and wildcards, see the Command Reference.

Referring to specific revisions of files

Perforce uses the # character to denote file revisions. File revisions in Perforce are
sequentially-increasing integers, beginning from #1 for the first revision, and so on. The
most recent revision of a file is the highest-numbered revision of that file on the server,
and is called the head revision. The revision you last synced to your workspace is called the
have revision. The zeroth revision of a file is called the null revision, and contains no data.

When you work in Perforce, development branches (or codelines) are represented as
directory paths. Files in different codelines have their own set of revision numbers,
starting at revision #1 and increasing upwards. The ancestry of files in different codelines
is preserved in integration records. To learn more about branching in Perforce, see
“Branching and integration” on page 19.

The indicator file.c#3/4 shows that you currently have revision #3 of file.c synced to
your workspace, and that the most recent revision of file.c is #4. In contrast to other
SCM systems, Perforce does not use perturbed version numbers (for instance, “revision
1.2.3 of file.c”) to denote revisions of files in different development branches.

Wildcard Meaning Example

* Matches all characters
except slashes within one
directory.

/src/*.c matches /src/file.c and
/src/file2.c, but not /src/lib/file.c

... Matches all files under the
current working directory
and all subdirectories.

/src/... matches all files and all
subdirectories in and under /src

%%1 - %%9 Positional specifiers that
replace portions of filenames
in views.

Mapping /%%1/%%2/... to /%%2/%%1/...
maps /web/images/file.gif to
/images/web/file.gif

Syntax Refers to Remarks

file.c#3 The third revision of file.c “Sync to the third revision of
file.c”.

file.c#head The most recent revision of
file.c stored on the server; this
is the head revision.

To get the latest versions of files from
the depot, you sync your workspace to
the head revision.
Perforce 2009.1 Introducing Perforce 11

Working in Perforce
Perforce syntax and the status bar

The syntax for the head, have, and null revisions (#head, #have, and #none) is used in the
Command Line Client and in the status window of graphical client programs. See the P4
User’s Guide for details.

What file types are supported?

Perforce file types include six base file types.

• text files,

• binary files,

• native apple files on the Macintosh,

• Mac resource forks,

• symbolic links (symlinks),

• unicode and utf16 files.

By default, when anyone adds a file to the depot, Perforce attempts to determine the type
of the file automatically. You can change a file’s type by opening it for edit as the new file
type. If the file is already open for edit, you can reopen it as the different file type.

The six base file types can have modifiers (such as +w, +x, +k, and others) applied that
control such things as locking behavior, file permissions within a client workspace, or
how revisions are stored on the server. The Command Reference contains a complete list of
file types and applicable modifiers.

file.c#have The revision of file.c last
synced to your workspace;
this is the have revision.

When you discard changes to a file,
your Perforce client program reverts
the copy of the file in your
workspace to the have revision.

file.c#none
file.c#0

The nonexistent, or null
revision, of file.c.

When you use a Perforce client
option to remove files from your
workspace, you are actually syncing
the revision of the file in your
workspace to the null revision.

Syntax Refers to Remarks
12 Perforce 2009.1 Introducing Perforce

Working in Perforce
Working with files

The changelist is the basic unit of work in Perforce. The basic file editing operations
common to all SCM systems (such as editing files, adding files, deleting files, backing out
changes, and checking in files) are performed in changelists.

Using changelists

After you have set up your workspace view and synced your workspace to the depot, you
can start working in Perforce. Before you can work on a file in your workspace, you must
use your Perforce client program to open the file in a changelist. A changelist consists of a
list of files, their revision numbers, the changes you have made to the files, and a
description that you supply that describes the work you performed.

Changelists serve two purposes:

• to organize your work into logical units by grouping related changes to files together

• to guarantee the integrity of your work by ensuring that related changes to files are
checked in together

If you are working on a change to some software that requires changes to three files, open
all three files in one changelist. When you check the changelist back into the depot, other
users will see your changelist linked to the changes made to all three files.

Perforce changelists are atomic change transactions; if a changelist affects three files, then
the changes for all three files are committed to the depot, or none of the changes are. Even
if the network connection between your Perforce client program and the Perforce server is
interrupted during changelist submission, the entire submit fails.

How changelist numbers work

A changelist with changes not yet submitted to the depot is a pending changelist. A
changelist containing changes that have been committed to the depot is a submitted
changelist. Each changelist has a changelist number (generated by Perforce), and a changelist
description (supplied by the user who performed the changes).

When you open a file in Perforce, the file is opened in a default changelist. The default
changelist is assigned a changelist number when you check its files back into the depot.

Changelist
3567

"Fixed bug, documented changes"

/depot/src/file1.c#5 edit

/depot/src/file1.h#3 edit

/depot/doc/readme.txt#1 add
Perforce 2009.1 Introducing Perforce 13

Working in Perforce
You can partition your work in progress into multiple pending changelists. Pending
changelists other than the default changelist are assigned numbers when you create the
changelist. (A new number may be assigned to a pending changelist when you submit the
changelist to the depot.)

Editing files

To edit a file, you check out the file in a changelist. Your Perforce client program makes
the copy of the file in your client workspace writable, and informs the Perforce server that
you have opened the file for editing.

For your changes to be available to other users, you must submit the changelist back to the
depot. After your changelist has been submitted, other users can sync their workspaces
and obtain their own copies of your changes.

Adding new files

To add a file, you create a file in your client workspace and mark the file for add in a
changelist. Your Perforce client program determines the file’s type (you can override this
file type), and informs the Perforce server that you intend to add a file.

For your new file to be available to other users, you must submit the changelist with the
added file back to the depot. After the changelist has been submitted to the depot, other
users can sync their workspaces and obtain their own copies of the new file.

Deleting files

To delete a file, you mark the file for delete in a changelist. The file is deleted from your
workspace immediately. Your Perforce client informs the server that you intend to delete
a file, but the file is not marked as deleted in the depot until you submit the changelist.

After you have submitted the changelist to the server, other users see your file marked as
deleted. Local copies of the deleted file remain in other users’ workspaces until those
users sync their workspaces to the depot.

Deleted file revisions are never actually removed from the depot. You can always recover
older revisions of deleted files by syncing revisions that predate the file’s deletion into
your client workspace.

Discarding unwanted changes

You can discard any changes you made to a file in a changelist by reverting the file.
Reverting a file removes the file from its changelist and restores the copy of the file in your
client workspace to the revision last synced to your workspace.

If you revert a file opened for edit or marked for delete, whatever version of the file you
last synced is restored to your workspace. If you revert a file marked for add, the file is
removed from your changelist, but your local copy of the file remains in your client
workspace.
14 Perforce 2009.1 Introducing Perforce

Working in Perforce
Checking in files

When you are satisfied with the changes you have made to the files you opened and want
your work to be available to others, check your work back in to the depot by submitting
the changelist.

There is no such thing as a partially-submitted changelist. Changelist submission is an
atomic transaction; either all of the files in a changelist are submitted successfully, or none
are.

Resolving conflicts

When two users edit the same file at the same time, their changes can conflict. If your
changes conflict with earlier changes submitted by another user, Perforce requires that
you resolve the conflicting files and re-submit the changelist. Because changelists are atomic
transactions, until you resolve the conflict, none of the changes to any of the files in your
changelist can appear in the depot.

The resolve process enables you to decide what needs to be done: should your file
overwrite the other user’s? Should your own file be thrown away in favor of the other
user’s changes? Or should the two conflicting files be merged into one file? At your
request, Perforce can perform a three-way merge between the two conflicting text files
and the file from which the two conflicting files were derived.

Changelist
3567

"Fixed bug, documented changes"

/depot/src/file1.c#5 edit

/depot/src/file1.h#3 edit

/depot/doc/readme.txt#1 add

workspacedepot

Changelist
1001

Changelist
1003

Changelist
1002

Changelist
(default)

merge

Base

Yours

Theirs

Merged Submitted

(resolve)
Perforce 2009.1 Introducing Perforce 15

Working in Perforce
Working concurrently

Perforce helps teams to work concurrently. The conflict resolution and three-way merge
process enables multiple users to work on the same files at the same time without
interfering with each other’s work.

The three-way merge process for resolving file conflicts helps you to resolve conflicting
changes to text files, but is not necessarily meaningful for binary files such as graphics or
compiled code. If you are working on files where merges are not meaningful, you can lock
such files to prevent others from making changes that conflict with your work.

Perforce supports two types of file locking. You can prevent files from being checked in
with file locking and you can prevent file checkout with exclusive-open:

• To prevent other users from checking in changes to a file you are working on, lock the
file. Other users can still check out your locked file, but are unable to submit changelists
that affect your locked file until you submit your changes. (To allow users to submit
changelists that affect your locked file before you submit your work, unlock the file.)

• To prevent a file from being checked out by more than one user at a time, use the +l
exclusive-open filetype modifier. Files that have the +l filetype modifier can only be
opened by one user at a time. Your Perforce administrator can use a special table called
the typemap table to automatically specify certain file types as exclusive-open.

For example, users working within an IDE that does not permit change resolution might
also want to lock the files they’re working on so they don’t have to switch to a Perforce
client program to submit their work, and users working on digital assets might want to
automatically classify all .gif or .mpg files as exclusive-open.

For more about locking files, the exclusive-open filetype modifier, and the typemap table,
see the Command Reference and the System Administrator’s Guide.

If you are editing Locked? Meaning

file (type) unlocked Anyone can check out file and submit their changes.

If a user submits changes to file while you have file
open, you must resolve your changes against their
changes when you submit your changelist.

file (type) locked Anyone can check out file, but no users can submit
changes to file until you submit your changes to file,
or until you remove the lock on file.

file (type+l) unlocked
or locked

Only one user at a time can have file open in a
changelist. The status of the lock is irrelevant; no other
users can submit changelists involving the file because no
other users can check out the file.
16 Perforce 2009.1 Introducing Perforce

Working in Perforce
Comparing files

You can use Perforce to compare any two revisions of the same file, of any two files in the
depot, or of files in the depot and their corresponding copies in your workspace.

The p4 diff and p4 diff2 commands produce output similar to that of the standard diff
program included in UNIX and Linux systems. Other Perforce client programs (including
P4V) include P4Merge, which provides a graphical view of file differences. For example:

Reviewing change histories of individual files

The history of a file is represented by a series of file revisions, one per file. Each revision to
the file is associated with a changelist. You can compare files against the revision in your
workspace or against any of the revisions stored in the depot.

This P4V screenshot shows that the depot holds three revisions of the file
//depot/dev/main/jamgraph/gparticle.cpp. The most recent revision, #3, was
submitted in changelist 720.
Perforce 2009.1 Introducing Perforce 17

Working in Perforce
Reviewing change histories of groups of files

The history of a directory is represented by a series of changelists. Directories do not have
individual revision numbers; rather, every changelist that includes at least one file is
considered to be part of a directory’s history.

This P4V screenshot shows that the most recent changelist that affected at least one file in
//depot/dev/main/jamgraph was changelist #768.

Perforce syntax and the status bar

Perforce has forms of syntax for referring to a file as it exists in the depot upon submission
of a numbered changelist, as tagged by a mnemonic label, or as of certain dates and times.
These forms of syntax (@changelist, @labelname, or @date, or #start,end) are typically
used only with the command line client, but they also appear in the status window of
graphical client programs. See the P4 User’s Guide for more details.
18 Perforce 2009.1 Introducing Perforce

Branching and integration
Branching and integration

To structure groups of related files by purpose, such as a new product or release, you use
branching. Branching is a method of managing changes between two or more sets of
related files. Perforce’s Inter-File Branching mechanism enables you to copy any set of files
to a new location in the depot by allowing changes made to one set of files to be copied, or
integrated, to the other. The new file set (or codeline) evolves separately from the original
files, but changes in either codeline can be propagated to the other by means of integration.

Most software configuration management systems support some form of branching;
Perforce’s mechanism is unique because it mimics the style in which users create their
own file copies when no branching mechanism is available.

Suppose for a moment that you’re writing a program and are not using an SCM system.
You’re ready to release your program: what do you do with your code? Chances are that
you’d copy all your files to a new location. One of your file sets becomes your release
codeline, and bug fixes to the release are made to that file set; your other files are your
development file set, and new functionality to the code is added to these files.

In Perforce’s terminology, each set of files constitutes
a codeline, and copying a change from one set of files
to another is called integration. The entire process is
called branching.

Perforce organizes files in the depot using directory
hierarchies, like a large hard drive. When you make
a new codeline, it appears in the depot as a
subdirectory, such as //depot/dev/main/jam for
ongoing development work,
//depot/release/jam/2.1 for release 2.1, and
//depot/release/jam/2.2 for release 2.2.

Creating a codeline

To create a codeline or development branch, decide which files belong in the branch (the
source files), and integrate those files into the new codeline to create the target files. The
Perforce server “opens the target files for branch/sync” in a changelist.

Opening files for branch/sync is just like opening them for add, edit, or delete; the files
are opened in a changelist, and your client workspace view must include the target files.
Similarly, no changes are made to the depot until you submit the changelist. The atomic
nature of changelists ensures that when you create a codeline, it contains all of the files
you branched.

Without an SCM system, you might create a branch by copying the files from one
directory into another directory. The advantage of integration over copying the files and
Perforce 2009.1 Introducing Perforce 19

Branching and integration
adding the copies to the depot in a new directory is that when you integrate files from one
codeline to another, Perforce can track the connections between related files in an
integration record, facilitating easy tracking and propagation of changes between the two
sets of files.

Integration also enables Perforce to perform a “lazy copy” of the files. When you branch
files, the server does not actually hold two copies of the files - it merely holds the source
file and a pointer in the database records the fact that the branch to the target file has
occurred. Lazy copies make branching a low-overhead operation; the server doesn’t have
to keep track of duplicate copies of files.

To integrate files from a source codeline to a target codeline:

• the target must be in your client workspace view

• the source doesn’t have to be in your client workspace view (although you must have
permission to read the source files)

• you open files for branch in a new changelist by integrating them

• you create files in the new codeline by submitting the changelist

//depot/main/...

//depot/rel1.0/...

//depot/main //depot/rel1.0.

source target

integrate
20 Perforce 2009.1 Introducing Perforce

Branching and integration
• when you submit the changelist with the target files, the target files in the new codeline
are at revision #1

• integration records enable you to examine the history of files in the new codeline,
including the fact that they were created by means of integration from the source files.

Propagating changes between codelines

You can use integration to propagate changes between related codelines in much the same
way you create codelines. (Creating a codeline is equivalent to propagating a set of
changes that make up the entirety of the source files into an empty set of target files.)

When you create a codeline, the target files are by definition empty; there is no possibility
your changes can conflict. When you propagate changes between existing codelines,
conflicts can arise because conflicting changes may have been made in both the source
and the target codelines.

In the example shown, the rel1.0 codeline was created by branching source files from
//depot/main into a target of //depot/rel1.0 in changelist 3567. Changelists 3574, 3582
and 3601 represent work performed in the release branch, and changelists 3575 and 3590
represent work performed in the main line.

In order to propagate work done in the release branch back into the main line, you
integrate from source files in //depot/rel1.0 into //depot/main, resolving any
conflicting changes between work done in the release branch and work done in the main
line.

Changelist
3567

//depot/main/...

//depot/rel1.0/...

Changelist
3574

Changelist
3582

Changelist
3601

Changelist
3590

Changelist
3575
Perforce 2009.1 Introducing Perforce 21

Branching and integration
Resolving differences between codelines

When you integrate changelists from a source codeline to an existing target codeline,
Perforce schedules a resolve, or a three-way merge, between the files.

The revisions in the target files in your client workspace are referred to as yours. The
revisions of the source files in the depot are referred to as theirs. Where changes between
these files do not conflict, the changes can be merged automatically. Where changes
conflict, you must choose which changes are to be accepted into the file.

Because changelists are atomic, you must resolve every file in a changelist before the
submit can succeed. You can resolve these situations in one of three ways:

• Automatically: In many cases, you will know whether you want to accept the changes
that are “yours” (that is, the target revisions in your client workspace) or “theirs” (that
is, the source revisions in the depot). Whether you accept “yours” or “theirs”, this type
of resolve is referred to as an automatic resolve without merging.

• Accept merged: Sometimes, there are changes made to the files that are “theirs” and
“yours” do not conflict. In these cases, Perforce merges the two files and provides you
with an option to accept the merged result. Such a resolve is referred to as a “safe”
automatic resolve with merging.

• Manual merge: Finally, there may be cases where the same lines in “theirs” and “yours”
have been changed. Such lines are said to conflict. When changes conflict, Perforce
resolves as many differences as possible and produces a merged file containing conflict
markers for manual resolution. You must either edit the merged file manually before
submitting it, or accept the merged file with the conflict markers included, and fix the
conflict in a subsequent changelist.
22 Perforce 2009.1 Introducing Perforce

Branching and integration
Duplicating complex branch structures

Perforce provides two mechanisms for branching: integrating using a file specification, and
integrating using a branch specification.

For simple branch structures, you can manually specify the paths of the source and target
files, and integrate your source files to the target branch using file specifications. You
must manually specify the source and target codelines every time you branch with a file
specification.

For more complex branch structures, you can set up branch specifications that enable you to
reliably duplicate even the most complex branch structures. A branch specification holds
a set of mapping rules (a branch view) that controls how files in the source branch are
integrated in the target branch. After you have set up a branch specification, you can
perform the integration by using the branch specification to perform all of the integrations
specified in the branch view.

For example, the branch specification
in the screenshot shows three
mappings:.

1. a mapping of all files in
//depot/dev/main/jamgraph
into
//depot/release/jamgraph/1.0
directory

2. an exclusionary mapping to
ensure that test work in
/jamgraph/test is not copied
from the main line

3. a mapping to include a DLL
(glut32.dll) deliverable located
in a common /bin build directory
unrelated to the jamgraph project.
Perforce 2009.1 Introducing Perforce 23

Branching and integration
Tracking change history between codelines

The Revision Graph feature of P4V is a convenient way of visualizing a file’s history
across (and between) branches.

The example screenshot shows a simple revision graph. The changes to the file
represented by revision #1 through revision #3 were integrated from the main codeline
(//depot/dev/main/...) into a release branch (//depot/release/jamgraph/1.0/...)
and into a development branch (//depot/dev/newfeatures...).

To learn more about branching

Although Perforce’s branching mechanism is relatively simple, the theory of branching
can be very complex. When should a branch be created? At what point should code
changes be propagated from one codeline to another? Who is responsible for performing
merges? These questions are common to every SCM system, and the answers are not
simple.

A white paper on Inter-File Branching that describes best practices for the use of Perforce’s
branching mechanism, as well as technical details, is available from:

http://www.perforce.com/perforce/branch.html
24 Perforce 2009.1 Introducing Perforce

http://www.perforce.com/perforce/branch.html

Next steps
Next steps

Work and defect tracking

Perforce includes a basic defect tracking system called jobs. A Perforce job is a description
of work to be done, such as a bug fix or a change request. Perforce’s job tracking
mechanism enables you to link one or more jobs to the changelists that implement the
work specified in the jobs. Associating jobs with changelists helps teams know if and
when work was completed, who performed the work, and what file revisions were
affected by the work. Jobs linked to changelists are marked as closed when the changelist
is submitted.

The types of information tracked by the jobs system can be customized; Perforce
administrators can add, change, or delete fields used by Perforce jobs. See the System
Administrator’s Guide for details.

Perforce currently offers two independent platforms to integrate Perforce with third-party
defect tracking and workflow systems. Both platforms allow information to be shared
between Perforce’s job system and external defect tracking systems.

P4DTG, the Perforce Defect Tracking Gateway, is a closed-source integrated platform that
includes both a graphical configuration editor and a replication engine. For more
information, see:

http://www.perforce.com/perforce/products/p4dtg.html

P4DTI, Perforce Defect Tracking and Integration, is an open-source product available
under a FreeBSD-like license. For more information, see:

http://www.perforce.com/perforce/products/p4dti.html

Tagging files with labels

Perforce labels are sets of tagged file revisions, enabling you to reproduce specific groups
of files within client workspaces. Labels differ from changelists in that a changelist
number represents the state of all files in the depot at the time the changelist was
submitted. Labels are used to tag arbitrary groups of files, even when those file revisions
represent work that was submitted in more than one changelist.

Another difference between changelists and labels is that changelists are referred to by
Perforce-assigned numbers, while labels take names chosen by users. For example, you
might want to tag the file revisions that compose a particular release with the label
rel2.1. At a later time, you can update the revisions tagged with rel2.1 to reflect fixes
performed in subsequent changelists, and retrieve all the tagged revisions into a client
workspace by syncing the workspace to the label.

For more about labels, see the P4 User’s Guide.
Perforce 2009.1 Introducing Perforce 25

http://www.perforce.com/perforce/products/p4dti.html
http://www.perforce.com/perforce/products/p4dtg.html

Next steps
Editors and merge tools

Most Perforce client programs have options that enable you to specify a preferred text
editor or merge tool. For example, the Command Line Client uses the environment
variables P4EDITOR and P4MERGE to invoke a preferred editor or merge tool.

See the documentation for your particular Perforce client program for details.

Protections and permissions

Perforce provides a protection scheme to prevent unauthorized or inadvertent access to
the depot. The protections determine which Perforce commands can be run, on which
files, by whom, and from which client workstations. Perforce administrators can set
protections by using the p4 protect command in the Perforce Command-Line Client, or
by using the Administration Tool in P4V.

For further information, see the System Administrator’s Guide.

Users and licenses

Perforce servers are licensed according to how many users they support. This licensing
information resides in a file called license in the server root directory. The license file is
a plain text file supplied by Perforce Software. Without the license file, the Perforce
server limits itself to two users and five client workspaces.

For further information, see the System Administrator’s Guide, or contact technical support.

Where to learn more about Perforce

To obtain online help from within all Perforce client programs:

• Use the help menu from within graphical Perforce client programs

• Type p4 help from the command line for help with the Command-Line Client

Documentation for Perforce is available on the web at:
http://www.perforce.com/perforce/technical.html

The Perforce Knowledge Base; a complete list of articles is available at:
http://kb.perforce.com/Technotes

Perforce also offers training classes. For details, see:
http://www.perforce.com/perforce/training.html

For an active mailing list where you can hear from other Perforce users and ask questions:
http://maillist.perforce.com/mailman/listinfo/perforce-user

Perforce support personnel are also available for email and telephone support.
http://www.perforce.com/perforce/support.html
26 Perforce 2009.1 Introducing Perforce

http://kb.perforce.com/Technotes
http://www.perforce.com/perforce/support.html
http://www.perforce.com/perforce/technical.html
http://www.perforce.com/perforce/training.html
http://maillist.perforce.com/mailman/listinfo/perforce-user

	Table of Contents
	����Introducing Perforce
	How Perforce Works
	The Perforce Server�
	Perforce client programs

	Working in Perforce
	Getting files from the server
	Referring to files in Perforce
	Working with files

	Branching and integration
	Creating a codeline
	Propagating changes between codelines
	Resolving differences between codelines
	Duplicating complex branch structures
	Tracking change history between codelines
	To learn more about branching

	Next steps
	Work and defect tracking
	Tagging files with labels
	Editors and merge tools
	Protections and permissions
	Users and licenses
	Where to learn more about Perforce

