
Document Version 1.6F.

Perforce Branching
Moving Fast from Theory into Practical

Application

Presented by

C. Thomas Tyler

The Go To Group, Inc.

 Software Production Line Automation www.Go2Group.com

Copyright © 2007 The Go To Group, Inc. All rights reserved. i

Table of Contents

1 Introduction ..1

2 Branch Strategy Basics..1
2.1 The Mainline Model..1

2.2 Planned vs. Organic Release Processes..1
2.3 Back to the Mainline ...2

2.4 Integration Types ...3
2.4.1 A Refresh:..3

2.4.2 A Promotion: ...4
2.4.3 Selective Integration: ..4

2.5 Planned and Organic Release Processes ..4
2.6 More than one Main? ..4

3 Directory Structure Considerations with Perforce...5
3.1 How many Depots? ...5

3.2 Product Families ..7
3.3 Products and Projects ..7

3.4 Branch Container Directories ...7
4 Release Process Classification ..8

5 Sample Case Studies..11

5.1 Case Study #1: Licensed Software, Large Global Development Team............11

5.1.1 Release Process Characteristics..11

5.1.2 Directory Structure..12

5.1.3 Directory Structure Diagram ..12

5.1.4 Notes ..12

5.2 Case Study #2: Embedded Systems Engineering...13

5.2.1 Release Process Characteristics..13

5.2.2 Directory Structure..13

5.2.3 Directory Structure Diagram ..14

5.2.4 Notes ..14

5.3 Case Study #3: Hosted Model with Organic Release Process............................14

5.3.1 Release Process Characteristics..14

5.3.2 Directory Structure..15

5.3.3 Directory Structure Diagram ..15
5.3.4 Notes ..15

5.4 Case Study #4: Consulting Model..15
5.4.1 Release Process Characteristics..15

5.4.2 Directory Structure..16
5.4.3 Directory Structure Diagram ..16

5.4.4 Notes ..16

Copyright © 2007 The Go To Group, Inc. All rights reserved. 1/16

1 Introduction
This document provides information helpful when defining a branching structure and

corresponding directory structure in Perforce. Included is general information such as

directory structure layout considerations and common branching strategy notes. With

Perforce’s Inter-File™ branching mechanism, the directory structure and branch model

are related. A well-defined directory structure helps convey branch structure and

software life cycle information, making it intuitive to use.

This document contains generalizations and is not intended to replace a specific

assessment for any given environment. It is hoped that the information herein will

provide some initial planning information that will help define an initial branching

structure.

2 Branch Strategy Basics
Branching strategies are generally intended to meet some combination of the following

objectives (some of which are mutually exclusive):

• Allow for a variety of different types of changes to be made concurrently, such as

urgent “hot fixes” made to Production code, separated from batches of new
development changes.

• Support multiple versions of delivered/released software, delivery of patches and

updates to released code.

• Allow for a set of planned, structured releases, where new development activities

are segregated into distinct efforts. For example, concurrently working on a 2.1

and a 3.0 after a 2.0 has been released.

• Provide a promotion path for software changes as they evolve from development,

through testing and Quality Assurance, and into Production.

• Allow for an organically evolving system, where changes are delivered on a very

granular level, with each small change being promoted and delivered, perhaps

daily.

2.1 The Mainline Model

The so-called Mainline Model is a well established standard branching structure. The

Mainline is akin to the origin in geometry; it is the theoretical starting point for branches.

It takes into account the objectives identified above, and allows for variations of the code

base as it evolves over time. The key concept of the Mainline Model is that variations of

the code base must be justified and temporary. For example, the desire to segregate code

in early development from changes in Production justifies maintaining an extra branch of

a codeline. However, changes made in Development and Production codelines are

encouraged to eventually return to the Mainline, thus reducing variations of the code base

to only those needed to support the mission.

2.2 Planned vs. Organic Release Processes

There are many variations of the Mainline Model and how it is employed, and many

factors which determine exactly what variations make the most sense for a given software

Copyright © 2007 The Go To Group, Inc. All rights reserved. 2/16

product line. For example, the strategy for managing C++ code for a complex and
mission-critical application, perhaps with a deep hierarchy of dependencies, to be burned

onto chips as firmware would probably follow a planned release model. This would help
promote a rigorous test and release cycle that focuses on promoting only fully tested and

approved configurations.

ASP and HTML changes for a dynamic and fast changing web application, where speed

of delivery is paramount to success in the business environment, would be more likely to

follow an organic release process. In an organic release process, changes tend to be

released in smaller, more granular chunks, resulting in a constant flow of smaller changes

to software running in hosted applications in a data center. Organic systems evolve

constantly, perhaps hourly in extreme cases. There is no “release” of a 2.2 of the

application. Instead the large applications’ many components are modified

independently as each change goes through a microcosm of larger development life

cycle.

Planned and organic release processes can be combined, such that small changes are

delivered in an organic fashion, while larger architectural overhauls are handled as

planned releases.

2.3 Back to the Mainline

In each of those situations, the Mainline Model encourages changes to “return to the
Mainline”, eliminating unnecessary divergence of the code base and helping keep overall

software development costs down. Figure 1 below illustrates one simple example of a
Mainline Model, with the Mainline (labeled ‘MAIN’) running through the middle, Dev

branches indicating new development efforts (Feature Sets 3.1 and 3.2) below MAIN,
and ‘#.#-R’ branches indicating support for released software above MAIN. Changes

made on each of the diverging codelines are propagated toward the Mainline. Fixes
made in support of released software are typically merged quickly back to the Mainline to

make them available for integration into new development efforts. Changes from new
development efforts are pushed to and through the Mainline on their way to Production.

Copyright © 2007 The Go To Group, Inc. All rights reserved. 3/16

Figure 1: A Sample Mainline Model Branch Diagram

2.4 Integration Types

When using branching mechanisms to support your release process, it is helpful to

classify integrations based on the intent of integration along a particular path. Following

are some helpful classifications:

2.4.1 A Refresh:

• is intended to integrate changes in one codeline with changes made in other
codelines. For example, a refresh might combine patches to a supported product

with new development changes.

• is an integration in the direction away from release codelines, e.g. from MAIN to

a Dev branch.

• requires potentially complex merge work, and may require manual resolution of

conflicts. The resolve is usually started as a 'p4 resolve -am', causing Perforce

to make its best guess at the merge result.

• can introduce instability in the target codeline. It is presumed that the codeline can

accept the instability, as it is farther from release codelines.

• is best performed by someone familiar with the software, requirements, and

ideally some insight to the history of changes.

MAIN

Int

3.2

Rel

Dev

3.0-R

3.1-R

3.2-R

3.1

Branch

Refresh

Promotion

Copyright © 2007 The Go To Group, Inc. All rights reserved. 4/16

• is often done as a piecemeal operation, e.g. by subsystem or areas of subject

matter expertise or code ownership/responsibility.

2.4.2 A Promotion:

• is intended to promote exact copies of tested, trusted software to the next step in
the release process, one step closer to Production.

• is an integration in the direction toward release codelines, e.g. from a Dev branch
to an Int branch, or an Int branch to MAIN.

• does not require resolution of changes with others, because the files are promoted
as they are, verbatim.

• is resolved with 'p4 resolve -at', a submit, and then a diff driven merge, which

forces the source and target codelines to match.

• can be performed as a wholesale operation by a centralized Configuration

Management or Release Engineering team. A promotion can be done by people

unfamiliar with the software.

• promotes the entire codeline from a known state as it meets ever-increasing

quality bars for each level of promotion. For example:
o A promotion from a development branch to an integration branch might

require that code compile and pass unit tests.
o A promotion from an integration branch to the Mainline might require

successful completion of directed functional tests.
o The initial promotion from Main to a release branch might require that all

tests available (regression, performance, stress, etc.) be run. It may be the
case that more stabilization work is needed on the release codeline before

actual release of the software, so running all tests does not necessarily

imply that the software must pass all tests.

2.4.3 Selective Integration:

• is intended to “cherry pick” selected changes from a codeline, such as extracting a

generic bug fix from a codeline normally used for custom development.

2.5 Planned and Organic Release Processes

Within the context of the Mainline Model theme, there are a great variety of possible

release processes, such “Planned Release” and “Organic” processes. First, you want to

be sure you’re on the most appropriate model for your mission. These classifications will

help determine an optimum release structure for any given application.

2.6 More than one Main?

An enterprise may have a single Mainline, or many instances of the Mainline concept.

You want to have at least one Mainline for each type of release process within your

organization, based on the release process classifications discussed below. If all

developed software products in your organization follow the same release process, they

might all fit under a single Mainline tree, regardless of whether the products share code.

Copyright © 2007 The Go To Group, Inc. All rights reserved. 5/16

Products and Product Families that follow a similar release process and also share code
might live under the same Main directory. Note that products will frequently have very

different release schedules, but still have the same release process – that is, the products
need to go through a similar series of gates or levels of quality assurance formality.

Products which have entirely different release processes should have separate Main

directories. For example, an enterprise might have set of legacy products nearing end of

life, for which multiple old versions must be supported. At the same time a set of active

new development efforts for new products, including formal planned releases to licensed

software, and also a set of hosted products running in a data center. For such an

enterprise, it might have a separate Mainline for the legacy products, one Mainline for the

planned release model supporting the licensed software, and yet another Mainline to

support organic release process for the hosted applications.

Products within a single product family, or even a group of related product families,

probably should share the same Mainline, especially if they share a common code base.

3 Directory Structure Considerations with Perforce
For purposes of this document, we divide the directory structure into the high-level and

low-level parts of the directory structure. The high-level parts of the directory structure,
those nearest the root of the tree, convey generic project management information. They

help make it clear what a codeline is used for.

For example, if you see the directory //Gizmos/PROD/BluGizmo, you might guess
(correctly) that production quality code sits in that structure.

If you see //Gizmos/Dev/BLUGIZMO-3.5/BluGizmo, you might guess

(correctly) that this directory is where you make new development changes for not-yet-

released BLUGIZMO-3.5 project. Seeing a few directories in a well organized structure

will start to imply a release process, even without any training or discussion.

Low level parts of the directory structure vary greatly based on the nature of the software

being developed and are beyond the scope of this document.

3.1 How many Depots?

The directory in a Perforce directory structure at the root of the hierarchy is called a

depot. This has certain implications for physical storage for the Perforce administrator,

but is like any other directory to users. There is no reason to confine development to a

single depot, once administrators have installed proper backup procedures to account for

the possibility of multiple depots. There are no limitations on code sharing or branching

of files in one depot to or from another. Allowing multiple depots allows the top level

directory to be meaningful in the directory hierarchy – if everything is under //depot, then
the “//depot” directory level isn’t helping organize your code base.

Creation of a new depot does require Perforce administration involvement to ensure that

new depots are properly created in a manner consistent with the backup procedures, and
also that avoid assigning physical storage for a depot to the same area as the Perforce

Copyright © 2007 The Go To Group, Inc. All rights reserved. 6/16

databases. So there are some reasons to discourage rampant proliferation of many
depots. But having several depots is typical even in a small organization. Large

enterprises typically have several depots.

The number of files involved plays some part in planning. For example, say an

organization maintains eighteen web sites, three of which are large complex web

applications, and fifteen of which are simple microsites. In that case you might have four

depots, one for each large application, and one for all the microsites.

Access controls also play a part. If an organization has a need for a particularly secret

subset of code, that code might be put into its own depot, to simplify access controls, thus

enhancing security.

When designing directory structures, one goal is to minimize pathname length. Using

multiple depots tends to reduce pathname length – instead of //MyComany/MyProductA,

you have just //MyProductA. Shorter directory pathnames also result in better

performance, because pathnames are a database key field in many Perforce queries, and
thus the length of pathnames affects how many keys can be stored in memory at once.

Shorter pathnames also reduce typing and save file structure navigation time.

We recommend against using the default depot in Perforce, named //depot, for
anything. Use of this depot can cause problems in common corporate merger and

acquisition scenarios where two companies desire to combine independent instances of
Perforce into a single system. Moreover, it doesn’t give the impression of a polished and

well thought out directory structure!

The initial set of depots might include the following:

• //3rdParty – Contains 3
rd

 Party/COTS software and tools used by your
organization. May also contain branching structures for software delivered in

source form and modified locally, making optimal use of Perforce to integrate
vendor updates with local modifications.

• //OpenSource – Contains all open source software, either used as tools or built
into your product. It is a good idea to segregate open source code into a separate

depot, partly to promote re-use, and also to simplify “black duck” analysis

(analysis of potential legal liabilities introduced by inappropriate use of open

source software).

• //Gizmo – Source Code for Gizmo product family

• //Gizmo-Build – Build area, populated only by fully automated build processes

(no humans allowed). Contains variations in build configurations, such as 32/64

bit, debug/optimized, or Windows/Mac/Linux/Solaris.

• //Giz-Release – Contains as-released software, suitable for distribution to runtime
environments, burning to CDs or firmware, or otherwise delivered. This includes

files from //Giz-Build, plus various config files, such as DB connection strings,
XML files defining app server settings, etc.

• //G2G – Contains Go2Group-deployed and maintained scripts and utilities.

Copyright © 2007 The Go To Group, Inc. All rights reserved. 7/16

Note that there are sets of related depots. Each product or product family might have a
set of depots for source code, builds, and as-deployed files, e.g. //Gizmo, //Gizmo-Build,

and //Gizmo-Deploy. A single //Config depot might contain various small config files for
all products.

3.2 Product Families

If there is a single product that might eventually grow into a family of related products,
the directory structure should account for that by inserting a ProductFamily directory

level in the directory structure, perhaps using ProductFamily as the depot name. For
example, you might have:

//Gizmos/MAIN/BluGizmo

Where Gizmos is a Product Family and BluGizmo is a software Product within that

family.

Any given Product Family can be assigned its own depot. If different Product Families
have different release processes, and thus deserve their own instance of a Mainline, those

Product Families probably also deserve their own depot.

3.3 Products and Projects

For purposes of this document, a Product is considered to be a long-lived entity. A
Project is a temporary concept, with a clearly defined beginning and end. If BluGizmo

lived for years or decades, it would be your product, while the BlueGizmo-3.3 and
BlueGizmo-3.4 projects came and went.

3.4 Branch Container Directories

We recommend establishing a set of container directories to hold branch directories of a

certain type. Using container directories helps convey the release process visually
through the directory structure.

For example, consider the following structure:

//Gizmos/Custom/ACME-C/BluGizmo/…
//Gizmos/Rel/BLUGIZMO-2.0-R/BluGizmo/…
//Gizmos/MAIN/BluGizmo/…

//Gizmos/Int/BLUGIZMO-3.0-Int/BluGizmo/…

//Gizmos/Dev/BLUGIZMO-3.0-FSA/BluGizmo/…

//Gizmos/Dev/BLUGIZMO-3.0-FSB/BluGizmo/…

//Gizmos/PD/ttyler/BLUGIZMO-3.0-FSB/BluGizmo/…

This structure seems to imply a promotion scheme. Just looking at the structure, you

might make a few educated guesses about the release process:

• The BluGizmo product in the Gizmos product family is undergoing active

development.

Copyright © 2007 The Go To Group, Inc. All rights reserved. 8/16

• A 2.0 version of BluGizmo product has been released. Any changes intended to

be released as patches (e.g. BluGizmo 2.0.1, 2.0.2, …) should be made in the

BLUGIZMO-2.0-R directory tree.

• There are two concurrent new development efforts, a Feature Set A (FSA) and a
Feature Set B (FSB), that at some point will be integrated into the upcoming 3.0

release. (It might be hoped, but not required, that both Feature Sets make it into
the release).

• A team assigned to work on Feature Set B within the Gizmo-3.0 project, and one
member of that team, ttyler, has embarked on a solo effort within Feature Set B in

his personal development branch.

• Software changes needs to pass some hurdles, e.g. unit testing to make it into the
Int (Integration) area from Dev.

• Software changes need to pass more rigorous testing to go from Int to MAIN, the
Main integration area. This might require formal QA using targeted functional

tests.

• Software changes need to pass the most rigorous testing to go from MAIN to a

Rel codeline. This might require formal QA doing comprehensive regression

tests and formal sign off.

• Regular “new development” software changes start life in some development

branch under a Dev container directory.

• Maintenance changes start life somewhere under the Rel directory.

Using container directories makes it easier for administrators to apply policies across all

codelines of a certain type. For example, it is common to require that all changes to

released code require some sort of ticket or bug number from an issue tracking system,

and that policy could be applied to //Gizmos/Rel/….

4 Release Process Classification
Following are a series of questions to ask about your release process. As the questions

are answered, a potential directory structure and implied branching structure will evolve.

1. What best describes the primary development/release cycle?

• Planned Releases – Formal releases are planned, developed, and delivered.
Planned releases are further characterized by cycle times for the release,

categorized as:
o Hyper: One release per month or faster.

o Short: About 3-5 releases per year.

o Nominal: Roughly one release every 6-18 months.

o Long: Typically 18+ months per release

• Organic - An ongoing series of updates or patches rather than formal planned

releases. The cycle of Dev->QA->Production still applies, but changes are tested

and delivered at a very granular level. A higher number of changes, each a
relatively small scope, are delivered to the Production environment more

frequently.

Copyright © 2007 The Go To Group, Inc. All rights reserved. 9/16

Within the Dev structure, a Project directory level is needed to support concurrent
development of Projects in Planned Release model. With the organic approach, all

changes originate in a singe Dev directory, and are promoted quickly upon completion.

2. Classify your Maintenance Requirements

• Simple: Minimal maintenance of released products; the product structure isn't

expected to change appreciably in maintenance

• Complex: Extensive, large scale development effort is focused on support of
released products, which could take years.

Rewriting Products in maintenance branches requires a more elaborate Release structure,

possibly with equivalents of Dev and Int branches under the Rel tree. This structure and
corresponding business practices around it are to be discouraged if practical.

3. What best describes the deployment model of your product:

• Hosted: No need to support old releases – your clients run whatever software

versions are running in the data center.

• Licensed Software Product: You need to support customers on multiple releases

of your software.

• Burn & Ship: Major releases are shipped (e.g. burned into firmware or CDs).
Patches may be required to software after initial delivery.

The hosted business model is very common, in part because it eliminates the need to

support customers on old releases of your software product. This works great if your

product lives completely within the digital world. If your product is shipped on CDs or

burned into firmware, the hosted model is not applicable.

In the Hosted Model, there is typically a single codeline named PROD that represents the

software deployed in the data center (or the source code from which software running in

the data center was compiled).

With the Licensed and Burn & Ship models, there is typically a Rel container directory,

and a set of branches that represent supported old releases.

4. Are all changes generic, or is there any need to support customizations?

• Yes

• No

This determines whether a Custom container directory is required. Typically files in the
Custom codeline are initially branched from some version of the generic product under

the Rel container directory.

5. If customization is required, can it be assumed that any given customer will be on
exactly one version of whichever products they are using? Or are there customer

installations so large that there's a need to support multiple releases of products for

the same customer?

Copyright © 2007 The Go To Group, Inc. All rights reserved. 10/16

• Simple: Yes, any given customer will have exactly one version.

• No: We need to account for the possibility that a specific customer might use
different versions of our product simultaneously (e.g. one version in their

Production environment, another in their Training environment, yet another in an
Evaluation environment, etc.).

The answer to this will influence the level of sophistication needed in the Custom

structure.

6. How many developers/contributors are involved? How many geographic sites are
involved? Is there (or are you trying to form) a formal QA organization?

An Int (Integration) container directory may be called for in large development efforts, or

for efforts which have formal QA policies and procedures, and/or if the product in

question is particularly complex. Note that the Mainline itself is a form of Integration

branch, and is sometimes called the Main Integration branch. Adding an Int container

directory between Dev and MAIN is simply an extension of the concept, adding an extra

layer of branching. Adding an integration branch provides more opportunities to test, but

typically results in a somewhat slower, but more controlled, release process.

Sophistication is justified Complexity. Keep in mind when establishing a branching

strategy that each level of branching requires more overhead and labor, yet provides more

flexibility and release process control. The challenge is to get just the right degree of

complexity/sophistication to achieve your mission.

7. Do users want Personal Development Branches (aka Sandboxes)?

• Yes

• No

With Perforce, each user typically has one or more workspaces in which to do their work.
A workspace does not imply a separate branch. Users each have their own set of files in

their workspace, and Perforce supports concurrent development of teams of users on the
same files in the same directory in the branch structure. If two or more people modify the

same file, they are forced to resolve their changes immediately upon submit. This helps
keep development activities well integrated.

However, there are times when a developer may need to embark on a solo effort for a

time, perhaps to implement a far-reaching architectural change. In this case, a personal

development branch may be called for. A PD container directory would contain personal

development branches, which are generally per-user, per-project (or simply per-user in an

organic model, where there are no Project branches.)

A common policy recommendation for personal development branches is to allow for

their use, but not to dictate their use. That way your users will naturally balance the

clutter vs. usefulness line, accepting the extra overhead of a personal development branch

only when justified by the type of work their doing. A given user might even work both

Copyright © 2007 The Go To Group, Inc. All rights reserved. 11/16

on a personal sandbox branch (to isolate complex architectural changes) and on the
regular development branch (on easier enhancements) at the same time.

8. Do we want Per-Bug branches?

• Yes

• No

• Maybe?

You’ll want to balance the value of the per-bug branch vs. the clutter factor. This

approach leads to a higher number of branches. If you couple this approach with a sparse

branching methodology that keeps branches small, or if you simply don’t have very many
files, this should work fine. You’ll just have many small branches. But if you have say

20,000 files to branch, and a full population (non-sparse) branch policy, and you create
many per-bug branches, you’ll soon be overwhelmed in clutter. Perforce is particularly

efficient at handling branching operations, but it can still be overloaded with excess
clutter.

5 Sample Case Studies
Following are some sample case studies of environments, with resulting directory

structures, based on various release process classifications. In all the samples below,

only the source code depot is shown, since the branching strategies discussed here apply
primarily to source code.

5.1 Case Study #1: Licensed Software, Large Global
Development Team

The fictional company Acme, Inc. develops one flagship product, Giz, and distributes it

as licensed software on their web site. They hope to add another product, Gyro, in the

next year. They have a large formal QA organization. They plan to deliver only bug

fixes on released software, focusing development activity forward on new releases. They

recently released 1.0, and are currently working concurrently on 2.0 and 2.1.

5.1.1 Release Process Characteristics

• Planned Releases

• Nominal Release Cycles

• Large, Multi-Site Teams

• Simple Maintenance

• No Customization Support – Generic Product Only

• Sandboxes used sparingly

Copyright © 2007 The Go To Group, Inc. All rights reserved. 12/16

5.1.2 Directory Structure

//Eng/

 Rel/<PROJECT>-R/[<ProductFamily>]/<Product>/...

 MAIN/[<ProductFamily>]/<Product>/...

 Int/<PROJECT>-INT/[<ProductFamily>]/<Product>/...

 Dev/<PROJECT>/[<ProductFamily>]/<Product>/...

 PD/<User>/<PROJECT>/[<ProductFamily>]/<Product>/...

5.1.3 Directory Structure Diagram

Figure 2: Directory Structure for Case Study #1

5.1.4 Notes

• Typical structure. Files are branched at and below the UPPERCASED dirs.

• Red arrows indicate promotion within the SDLC.

• The ‘-R’ and ‘-INT’ seem to be redundant, but are helpful when those branch
directories are used in other contexts.

• In the Rel structure, Project names look like GIZ-1.0-R

• In the Int structure, Project names look like GIZ-1.1-Int

• The Sandbox container directory is not shown.

• Sometimes the best practice is to select project names that do not imply a release
order. In that case, concurrent development projects are given some identifier that

is associated with a set of features/functionality to be delivered, rather than the
intended order of release. This advanced approach adds project management

flexibility at the cost of some extra complexity.

//Eng

Dev Int MAIN Rel

GIZ-2.1
Giz

src html

GIZ-2.0

GIZ-1.0-R

Giz

src html

Giz

src html

Giz

src html

GIZ-2.x-INT

Giz

src html

Copyright © 2007 The Go To Group, Inc. All rights reserved. 13/16

• The diagram depicts a directory structure that aids in comprehending the

underlying branching structure, even though the branching structure isn’t directly

depicted.

• This model would have the following branch specs defined:

Branch

Type

Branch Spec Source Target

Personal
Dev

PD.juser.GIZ-
2.0.B

//Eng/Dev/GIZ-2.0/Giz/… //Eng/PD/juser/GIZ-2.0/Giz/…

Dev GIZ-2.0.B //Eng/Int/GIZ-2.x-INT/Giz/… //Eng/Dev/GIZ-2.0/Giz/…

Dev GIZ-2.1.B //Eng/Int/GIZ-2.x-INT/Giz/… //Eng/Dev/GIZ-2.1/Giz/…

Int GIZ-2.x-Int.B //Eng/MAIN/Giz/… //Eng/Int/GIZ-2.0-INT/Giz/…

Rel GIZ-1.0-R.B //Eng/Rel/GIZ-1.0-R/Giz/… //Eng/MAIN/Giz/...
Table 1: Branch Specs for Case Study #1

5.2 Case Study #2: Embedded Systems Engineering

The fictional company Acme2, Inc. develops one flagship product, Bali, which is an

embedded system. They have no formal QA organization and no immediate plans to
form one. They plan to deliver only bug fixes on released software, focusing

development activity forward on new releases. They recently released 1.0, and are
currently working concurrently on 2.0 and 2.1.

5.2.1 Release Process Characteristics

• Planned Releases

• Long Release Cycles

• Simple Maintenance

• Simple Customization Support

5.2.2 Directory Structure

//Eng/

 Custom/<CUSTOMER>-C/[<ProductFamily>]/<Product>/...
 Rel/<PROJECT>-R/[<ProductFamily>]/<Product>/...

 MAIN/[<ProductFamily>]/<Product>/...
 Dev/<PROJECT>/[<ProductFamily>]/<Product>/...

Copyright © 2007 The Go To Group, Inc. All rights reserved. 14/16

5.2.3 Directory Structure Diagram

Figure 3: Directory Structure for Case Study #2

5.2.4 Notes

• Typical structure.

• Project Names may be something like 3.0 if that applies to everything under that
Mainline, or <Product>-<Version>, e.g. Bali-3.0.

• In the Rel structure, Project names look like BALI-1.0-R

• Sometimes the best practice is to select project names that do not imply a release
order.

5.3 Case Study #3: Hosted Model with Organic Release Process

Company Acme3 hosts a suite of applications for their customers in their own data

center. They have a process of classifying changes to their software into content changes

and functionality changes. Content changes follow an organic release process, with no

formal QA involvement. Functionality changes go through a planned release process,

allowing more time for rigorous testing.

5.3.1 Release Process Characteristics

• Combines Organic and Planned Release Processes

• Small Development Team

• No Customization Support

• No Maintenance of old releases

//Eng

Dev MAIN Custom

BALI-2.1 BALI-2.0

Bali

src html

Bali

src html

Bali

src html

Bali

src html

Rel

BALI-1.0-R

Bali

src html

NAVY-C

Copyright © 2007 The Go To Group, Inc. All rights reserved. 15/16

5.3.2 Directory Structure

 //Eng/
 PROD/<HostedApp>/...

 MAIN/<HostedApp>/...
 Dev/NEWDEV/<HostedApp>/...

 Dev/<PROJECT>/<HostedApp>/...

5.3.3 Directory Structure Diagram

Figure 4: Directory Structure for Case Study #3

5.3.4 Notes

• <HostedApp> is equivalent to <Product> in other structures.

• No <Project> level – new development consists entirely of small-scale changes.

• Note: It is possible to mix Planned and Organic releases processes for a single

product, though this requires disciplined classification of changes prior to
commencing implementation.

5.4 Case Study #4: Consulting Model

A small consulting services firm has a set of code which they use as seed code for stock

trend analysis solutions they develop for clients. The work invariably requires extensive
systems integration and customization efforts, and the tools are heavily customized for

each customer. There is no generic product as such, only a generic code base that is used
as seed code for each consulting engagement.

5.4.1 Release Process Characteristics

• Organic Release Process

• No “Production” environment for generic product

//Eng

Dev MAIN PROD

ACME3-2.0 NEWDEV

Acme3

src html

Acme3

src html

Acme3

src html

Acme3

src html

Copyright © 2007 The Go To Group, Inc. All rights reserved. 16/16

• Extensive Custom development

• No formal QA

• Small Development Team

5.4.2 Directory Structure

//Eng

 Custom/<CUSTOMER>-C/<Product>/...
 MAIN/<Product>/...

 DEV/<Product>/...

5.4.3 Directory Structure Diagram

Figure 5: Directory Structure for Case Study #4

5.4.4 Notes

• No formal QA, thus no Int or Rel structures.

• Fast path from Dev to Custom, since products tend to be simple (e.g. Perl
scripts).

• Generic product is thought of as seed code, delivered to Systems Integration
organization, where product is customized for delivery to customers.

• Generic changes that happen to start as Custom should be merged ...

- Directly to Main if both the change AND merge are trivial
- to DEV if either change OR the merge isn't trivial

//Eng

DEV MAIN Custom

src html

NHState-C Toolkit

src html

Toolkit

src html

Toolkit

