
www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (0220RB21)

Introduction

The automotive software development process can be complex and time-consuming,

which is why it is important to use the right software development tools and follow

best practices for automotive software development. By doing so, you are able to

ensure secure, reliable, and standards-compliant automotive software.

Here, we provide an overview of the key automotive software standards that you

should use, the best practices to safeguard against security threats, and touch on

autonomous vehicles and smart car features.

W H I T E PA P E R

Guide to Automotive Software Development:
Automotive Standards, Security,
and Emerging Technology

www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (0220RB21)

WHITE PAPER

2 | Guide to Automotive Software Development

Table of Contents

Overview of Automotive Standards 3

Coding Guidelines ... 3
MISRA ... 3

AUTOSAR C++14 ... 3

How to Achieve Coding Standard Compliance 3

ISO 26262 and ASIL — Automotive Functional Safety .. 4
Motorcycle Standards for Functional Safety 6

ISO 21434 — Automotive Software Security 7

ISO/PAS 21448 — Safety In Autonomous Driving 7

The Essential Automotive Software Quality Metrics 8

The Future of Automotive Software Development10

www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (0220RB21)

WHITE PAPER

3 | Guide to Automotive Software Development

Overview of Automotive Standards
All vehicles are governed by standards. These include

functional safety standards and functional security

standards and these in turn require the use of coding

guidelines for the development of the many software

components in the vehicle.

Overview of Coding Guidelines
Although no function safety or security standard specifies

a particular coding standard, there are internationally

recognized coding guidelines available to help meet the

required security and safety standards.

MISRA

MISRA, originally written for the automotive industry,

provides coding standards for developing safety-critical

systems.

The initial version, published in 1998 was for C, and this

was then extended to C++ in 2008.

MISRA C is the most widely used set of coding guidelines

for C around the world. The most recent version of the

standard is MISRA C:2012.

MISRA C++ is widely used by safety-critical developers.

The current version was published in 2008 but an update

is forthcoming in the near future.

MISRA coding guidelines are now widely used

by industries such as aerospace and defense,

telecommunications, medical devices, and rail as well

as automotive

AUTOSAR C++ 14

The AUTOSAR coding guidelines are for the use of the

C++14 language in critical and safety-related systems.

They were developed for use in the AUTOSAR Adaptive

Platform, but are applicable to any safety-critical

applications written in C++.

Since MISRA C++ was published, C++ has evolved and

other C++ coding guidelines are available, for example

HIC++, CERT C++, and C++ Core Guidelines. AUTOSAR

C++ 14 addresses these changes and incorporates the

expert knowledge embedded in these other coding

standards. AUTOSAR C++14 is based on MISRA

C++:2008 coding guidelines but with the addition of the

best features of other C++ coding standards, such as JSF

and CERT C++.

The standard allows the use of some features that are not

permitted by other C++ coding standards, including:

• Dynamic memory

• Exceptions

• Templates

• Inheritance

• Virtual functions

How to Achieve Coding Standard
Compliance
Achieving compliance to any coding standard takes

knowledge, skill, and the right tools. Here are seven

recommended steps to achieve compliance:

www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (0220RB21)

WHITE PAPER

4 | Guide to Automotive Software Development

1. Know the Rules

You need to know the coding rules pertinent to

which version of C or C++ you’re using.

2. Check Your Code Constantly

Continuously inspecting your code for violations is

the best way to improve quality.

3. Set Baselines

Embedded systems come with legacy codebases.

By setting baselines, you can focus on making sure

your new code is compliant.

4. Prioritize Violations Based on Risk

You could have hundreds or even thousands of

violations in your code. That’s why it’s important

to prioritize rule violations based on risk severity.

Some static code analysis tools can do this for you.

5. Document Your Deviations

Sometimes there are exceptions to the rule. But

when it comes to compliance, every rule deviation

needs to be well-documented.

6. Monitor Your Compliance

Keep an eye on how compliant your code is.

Using a static code analyzer makes this easier by

automatically generating a compliance report.

7. Choose the Right Static Code Analyzer

Choosing the right static code analyzer makes

everything else easy. It takes care of scanning

your code — new and legacy — for violations. It

prioritizes vulnerabilities based on risk.

ISO 26262 and ASIL: Automotive
Functional Safety
ISO 26262 - “Road vehicles — functional safety”, is the

major functional safety standard used in the automotive

industry, and ASIL is a key component to determine safety

requirements for software development. It is a risk-based

safety standard and applies to electric and/or electronic

systems in production vehicles. This includes driver

assistance, propulsion, and vehicle dynamics

control systems.

It covers the functional safety aspects of the entire

development process:

• Requirements specification

• Design

• Implementation

• Integration

• Verification

• Validation

• Configuration

WHY IS ISO 26262 IMPORTANT?

The goal of the standard is to ensure safety throughout

the lifecycle of automotive equipment and systems.

Specific steps are required in each phase. This ensures

safety from the earliest concept to the point when the

vehicle is retired.

Compliance to this standard is compulsory for any

road vehicle and by complying, you’ll avoid or control

systematic failures, detect or control random hardware

failures and be able to mitigate the effects of failure.

ISO 26262 FUNCTIONAL SAFETY FOR
SOFTWARE DEVELOPERS

Part 6: Product development at the software level and

Part 8: Supporting processes are the sections applicable

to software development. They detail the steps that must

be taken to ensure the safety of each component.

WHAT IS ASIL?

Automotive Safety Integrity Level (ASIL) is a key element

of ISO 26262 and it is used to measure the risk of a

specific system component. The more complex the

system, the greater the risk of systematic failures and

random hardware failures.

www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (0220RB21)

WHITE PAPER

5 | Guide to Automotive Software Development

There are four Automotive Safety Integrity Level values,

A–D where ASIL A is the minimum level of risk and ASIL

D is the maximum. Compliance requirements become

stricter as you go from A to D.

There is an additional option — QM (quality

management) which is used to note that there isn’t a

safety requirement for that component.

HOW TO DETERMINE ASIL?

ASIL is determined by three factors — severity, exposure,

and controllability.

SEVERITY

Severity measures how serious the damages are of

a system failure. Damages include both people and

property.

There are four classes of severity:

1. S0: No injuries.

2. S1: Light to moderate injuries.

3. S2: Severe to life-threatening (survival probable)

injuries.

4. S3: Life-threatening (survival uncertain) to fatal

injuries.

EXPOSURE

Exposure is the likelihood of the conditions under which

a particular failure would result in a safety hazard.

The probability of each condition is ranked on five-point

scale:

5. E0: Incredibly unlikely.

6. E1: Very low probability (injury could happen only in

rare operating conditions).

7. E2: Low probability.

8. E3: Medium probability.

9. E4: High probability (injury could happen under

most operating conditions).

CONTROLLABILITY

Controllability is a measure of the probability that harm

can be avoided when a hazardous condition occurs. This

condition might be due to actions by the driver or by

external measures.

The controllability of a hazardous situation is ranked on a

four-point scale:

10. C0: Controllable in general.

11. C1: Simply controllable.

12. C2: Normally controllable (most drivers could act

 to prevent injury).

13. C3: Difficult to control or uncontrollable.

HOW TO DETERMINE ASIL

Once you’ve determined severity, probability, and

controllability, you can determine the Automotive Safety

Integrity Level. Table 4 of Part 3 provides guidance

 on this.

1.

2.

3.

4.

5.

1.

2.

3.

4.

www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (0220RB21)

WHITE PAPER

6 | Guide to Automotive Software Development

HOW TO COMPLY WITH ISO 26262

Compliance with the safety standard is important,

whether you’re developing traditional automotive

components (e.g., integrated circuits) or virtual ones

(e.g., automotive hypervisors). And it’s critical to

maintain compliance throughout your software

development lifecycle.

But complying can be difficult for development teams.

Systems and codebases grow complex. And that makes it

difficult to verify and validate software.

You can make it easier by using certified software

development tools.

ESTABLISH TRACEABILITY

Fulfilling compliance requirements — and proving you

met them — is a tedious process. You need to document

the requirements and trace them to other artifacts —

including tests, issues, and source code.

Establishing requirements traceability makes your

verification process easier, and it helps you manage risk

in the development process.

Storing your code in a version control system securely

manages revision history for all your digital assets. You’ll

get fine-grained access controls, high-visibility audit logs,

strong password security, and secure replication. So, you

can be confident in your code.

APPLY A CODING STANDARD

ISO26262 requires that a coding standard is

applied which will allow fulfill specific coding and

design guidelines.

Applying a coding standard, such as MISRA or AUTOSAR,

is made easier by use a static analyzer.

MOTORCYCLE STANDARDS FOR
FUNCTIONAL SAFETY

The first edition of ISO 26262 , published in 2011,

covered series production passenger cars. While much

of the guidance contained within this standard was

also relevant to motorcycles, the hazard analysis and

risk assessment for motorcycles required a

different approach.

Therefore, the scope of the second edition of ISO 26262,

published in 2018, was extended to provide guidance

to motorcycle manufacturers. Part 12, “Adaption of

ISO 26262 for Motorcycles” was added which places

more responsibility on the motorcyclist rather than the

motorcycle to mitigate risks. To better assign safety

criticality to a system, the Motorcycle Safety Integrity

Levels (MSIL) were developed. They are determined

by the same factors as ASIL and are assigned the same

values, A-D, but include elements that are specific to

motorcycle applications.

Once the MSIL has been determined, it can be mapped

to an equivalent ASIL:

MSIL ASIL

QM QM

A QM

B A

C B

C C

This then allows motorcycle applications to be developed

according to the aligned ASIL with only some minor

differences.

www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (0220RB21)

WHITE PAPER

7 | Guide to Automotive Software Development

ISO/PAS 21448 — Safety In
Autonomous Driving
ISO/PAS 21448 Road Vehicles — Safety of the Intended

Functionality (SOTIF) applies to functionality that requires

proper situational awareness in order to be safe. The

standard is concerned with guaranteeing safety of the

intended functionality — SOTIF — in the absence of a

fault. This is in contrast with traditional functional safety,

which is concerned with mitigating risk due to

system failure.

SOTIF provides guidance on design, verification, and

validation measures. Applying these measures helps you

achieve safety in situations without failure.

For example:

• Design measure example: requirement for

sensor performance.

• Verification measure example: test cases with high

coverage of scenarios.

• Validation measure example: simulations.

WHY SOTIF IS IMPORTANT

Automated systems have huge volumes of data — and

that data is fed to complex algorithms. AI and machine

learning are critical for developing these systems.

To avoid potential safety hazards, AI will need to

make decisions. This includes scenarios that require

situational awareness.

Using ISO 21448 will be key to ensure that AI is able to

make decisions and avoid safety hazards.

For example:

The road is icy. An AI-based system might be unable to

comprehend the situation — and respond properly. This

impacts the vehicle’s ability to operate safely. Without

sensing the icy road condition, a self-driving vehicle

might drive at a faster speed than is safe for the condition.

Fulfilling ISO 21448 means taking that situation into

account and making decisions based on probability.

The goal of SOTIF is to reduce potential unknown,

unsafe conditions.

HOW ISO 21448 IS RELATED TO ISO 26262

Although ISO 26262 covers functional safety in the event

of system failures, it doesn’t cover safety hazards that

don’t lead to a system failure.

ISO 26262 still applies to existing, established systems

— such as dynamic stability control (DSC) systems

or airbags. For these systems, safety is ensured by

mitigating the risk of system failure.

ISO 21448 applies to systems such as emergency

intervention systems and advanced driver assistance

systems. These systems could have safety hazards —

without system failure.

ISO 21448 will be important for functional safety in

autonomous driving. But compliance with established

functional safety standards such as ISO 26262 will remain

important.

ISO 21434 — Automotive
Software Security
ISO 21434 “Road vehicles — cybersecurity engineering”

is an automotive standard currently under development.

It focuses on the cybersecurity risk in road vehicle

electronic systems.

The standard will cover all stages of a vehicle’s lifecycle

— from design through to decommissioning by the

application of cybersecurity engineering. This will apply

to all electronic systems, components, and software in

the vehicle, plus any external connectivity.

www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (0220RB21)

WHITE PAPER

8 | Guide to Automotive Software Development

What’s more, the standard will provide developers with

a comprehensive approach to implementing security

safeguards that spans the entire supplier chain. The

intent behind the standard is to provide a structured

process to ensure that cybersecurity considerations are

incorporated into automotive products throughout

their lifetime.

The standard will require automotive manufacturers

and suppliers to demonstrate due diligence in the

implementation of cybersecurity engineering and that

cybersecurity management is applied throughout the

supply chain to support it.

It is intended that organizations will encourage a

cybersecurity culture so that everything is designed with

security considerations from the start.

HOW TO COMPLY WITH ISO 21434

ISO/SAE 21434 has specific requirements for software

development including analysis to check for inherent

weaknesses and the overall consistency, correctness,

and completeness with respect to cybersecurity

requirements.

Cybersecurity should be at the forefront of all design

decisions including the selection of the programming

language to be used for software development.

There are several criteria to be considered when selecting

a programming language, including:

• Secure design and coding techniques.

• Unambiguous syntax and semantic definitions.

However, some of these criteria may not be sufficiently

addressed in the selected language. Which is why

there are several ways of addressing these language

deficiencies, including:

• Use of language subsets.

• Enforcement of strong typing.

• Use of defensive implementation techniques.

It is recommended to use coding guidelines to address

the deficiencies of the chosen language.

C continues to be the most common language used in

automotive software. MISRA C:2012 revision 1 and CERT

C guidelines are particularly recommended in ISO/SAE

21434 for any projects using the C language.

Creating a language subset is the core of MISRA C:2012

and CERT C guidelines. MISRA C:2012 revision 1 states:

“The MISRA C Guidelines define a subset of the C

language”. Both guidelines achieve this by preventing

the use of functionality that may cause critical or

unspecified behavior.

Strong typing ensures that there is an understanding of

the language data types and thus prevents certain classes

of programming errors. Using coding guidelines, such

as MISRA C:2012 and CERT C, that have strong typing

ensures correctness and consistency.

Defensive implementation techniques allow software

to continue to function even under unforeseen

circumstances. It requires thought about “what might

happen”. There needs to be, for example, consideration

of possible tainted data and understanding of the order

of evaluation of arithmetic functions. Above all the code

needs to be simple to understand.

All defensive implementation techniques should start

with the use of recognized coding guidelines. Both

MISRA C:2012 Revision 1 and CERT C achieve this by

identifying critical and unspecified language behavior

and thus making the resulting code more reliable, less

prone to errors, and easier to maintain.

The Essential Automotive Software
Quality Metrics
In the Automotive Industry, software quality is paramount

and software metrics are an important measure of that

quality and are applicable to both function safety and

functional security standards

www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (0220RB21)

WHITE PAPER

9 | Guide to Automotive Software Development

However, no single metric can give a definitive measure

of the quality of software and Automotive suppliers need

to agree with their OEM both the metrics they require

and the acceptable limits of the values of those metrics.

However, it is difficult to select the set of metrics that give

the quality coverage required.

HERSTELLER INITIATIVE SOFTWARE METRICS

In the Automotive industry, the obvious starting point for

the selection of metrics are those defined in Hersteller

Initiative Software (HIS).

HIS defines a common set of software metrics which

permits a supplier to make statements about the quality

of the software product and the software development

process. In addition, an acceptable range of values of the

defined metrics is specified.

These metrics are separated into distinct categories:

• 15 Metrics with limits that generally measure the

complexity of the code.

• 3 Metrics without limits that are simply measured

values that must be documented.

METRICS WITH LIMITS

Metrics with limits indicate range of values showing the

acceptable boundary limits. Violations of the boundary

limits must be justified, and further action is required by

the supplier.

Examples of the metrics with limits specified in HIS:

CYCLOMATIC COMPLEXITY “V(G)”

Cyclomatic Complexity is the count of the number of

linearly independent paths through the source code.

It can be used in two ways:

1. To limit the complexity of code.

2. To determine the number of test cases necessary to

thoroughly test it.

NUMBER OF GOTO STATEMENTS “GOTO”

This metric is very simple, but it can easily be seen that

the higher the number, the more paths through the code,

which means the more difficult the code is to test.

NUMBER OF RETURN POINTS WITHIN A
FUNCTION „RETURN“

Good practice dictates that the ideal value of this metric

should be 1 as this improves the maintainability of

the function (a function with no specific return is also

acceptable).

METRICS WITHOUT LIMITS

All the metrics in this section are similar: STMT (changed),

STMT (new), STMT (deleted).

These measure the number of statements in a piece

of software that have changed, are new, or have been

deleted between the previous and the current version of

the software.

These are used to calculate the stability index, which is

part of Metrics with limits.

HIS is purely concerned with the coding phase of the

software life cycle.

By analyzing these metrics, and ensuring that they

are within the specified limits, the effort required in

the following phases — particularly testing — will be

reduced.

METRICS FOR ISO 26262

It is necessary for Automotive applications to certify

to ISO 26262, and as a requirement to achieve this

certification, a series of metrics must be gathered. The

required level of metrics depends on the ASIL which

determines the degree of risk. Higher ASILs require more

thorough quality measures to control the risk.

Specific metrics are not required, but there are obvious

well-known metrics that are applicable.

www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (0220RB21)

WHITE PAPER

10 | Guide to Automotive Software Development

For example, ENFORCEMENT OF LOW COMPLEXITY

which is HIGHLY RECOMMENDED FOR ALL ASIL can

be measured by lines of code (LOC) and Cyclomatic

Complexity (as discussed in HIS metrics).

Similarly, at an architectural level, RESTRICT SIZE AND

COMPLEXITY OF SOFTWARE COMPONENTS — HIGHLY

RECOMMENDED FOR ALL ASIL can be measured

by Halstead metrics which look at the source code

to identify areas that may be subject to defects by

interpreting the code as a sequence of tokens.

The metrics that count the tokens are:

• STM20 — Counts ALL operands in the file

• STM21 — Counts ALL operators in the file

Other measures can be calculated regarding program

length and difficulty.

For example:

• STM22 — Number of statements in a software

component

• STVAR — Total number of Variables

• STTLN — Total Pre-processed Source Lines

There are, of course, other sections of ISO 26262 that

require metrics, particularly methods for tests and

deriving test cases.

SOFTWARE QUALITY METRICS WILL ALWAYS
 MATTER FOR AUTOMOTIVE SOFTWARE

Software metrics are vital for assessing and maintaining

quality in the Automotive Industry.

There are metrics that are specific to the requirements

of Automotive OEMs and suppliers, but the choice of

metrics should not be limited by those necessary for

certification purposes. The metrics selected should be

applicable to the role of the viewer; the OEM’s view is

different to that of the supplier.

Metrics should be selected to measure the progress to

achieve specific goals, and the data gathered analyzed

and used by the appropriate people. When this is done,

they are invaluable as a measure of progress and current

software quality plus as an aid to improvement in

the future.

The Future of Automotive
Software Development
Future development of Autonomous vehicles relies on AI

and machine learning.

One of the biggest challenges in this area is security. The

starting point is a Secure Development Processes

Here are three examples of key secure development

processes:

1. Good programming practices and thorough

testing efforts are critical for eliminating security

vulnerabilities. This can be achieved by using secure

coding standards.

2. Threat modeling and risk mitigation are key to

developing safe components. This can be achieved

by doing a hazard and risk analysis.

3. Control over the build/release environment is

key to keeping hackers out — and keeping the

build secure. This can be achieved through access

controls in your CI/CD environment.

Part of the secure development process should be

automation. Applying automation to design, verification,

and validation processes makes development teams

more efficient.

Using a requirements management tool contributes to

safer design of the software.

Using a test case management tool can help you ensure

high coverage of different scenarios. This helps with

software verification.

Using a static analysis tool can help you simulate potential

run-time scenarios. This helps with software validation.

www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (0220RB21)

About Perforce

Perforce powers innovation at unrivaled scale. With a portfolio of scalable DevOps solutions, we help modern enterprises overcome
complex product development challenges by improving productivity, visibility, and security throughout the product lifecycle. Our portfolio
includes solutions for Agile planning & ALM, API management, automated mobile & web testing, embeddable analytics, open source
support, repository management, static & dynamic code analysis, version control, and more. With over 9,000 customers, Perforce is trusted
by the world’s leading brands, including NVIDIA, Pixar, Scania, Ubisoft, and VMware. For more information, visit www.perforce.com.

WHITE PAPER

11 | Guide to Automotive Software Development

How Perforce Software
Development Tools can Help
Ensure Secure, Reliable,
and Standards-Compliant
Automotive Software
The most effective way to ensure that your automotive

software is secure, reliable, and standards-compliant is

to use a suite of tools, including a static code analyzer

(like Helix QAC or Klocwork), a version control systems

tool (like Helix Core), and an application lifecycle

management tool (like Helix ALM).

A static analyzer can be used to provide automatic

enforcement of automotive coding guidelines — such as

MISRA and AUTOSAR.

Yet, static analysis can do so much more than this,

such as:

• Automatically and consistently enforcing coding

standards and detecting rule violations.

• Detecting compliance issues earlier in the SDLC.

• Accelerating code reviews.

• Reporting compliance over time and across

product versions.

See for yourself how Perforce static code analyzers can

help ensure that your automotive software is secure,

reliable, and compliant. Request your free trial today.

A version control systems tool, like Helix Core, supports

your team and files as they grow. In addition, Helix Core

supports build automation by:

• Providing a shared, centralized repository for

commits.

• Maintaining a single source of truth for the build.

• Integrating with Jenkins and other build runners for

better CI/CD projects.

• Automating workflows.

Helix ALM provides end-to-end traceability by linking

your requirements, test cases, and issues all inn one

platform. Its configurable workflow easily adapts to the

way you already work. This helps ensure that everyone on

your team is able to seamlessly work together.

TRY PERFORCE
STATIC CODE ANALYZERS

TRY HELIX CORE

TRY HELIX ALM

perforce.com/products/helix-alm/free-alm-trial

perforce.com/products/helix-core/free-version-control

perforce.com/products/sca/free-static-code-analyzer-trial

https://www.perforce.com/products/sca/free-static-code-analyzer-trial
https://www.perforce.com/products/sca/free-static-code-analyzer-trial
https://www.perforce.com/products/helix-core/free-version-control
https://www.perforce.com/products/helix-alm/free-alm-trial

