
Improving Perforce Performance by over 10x
Tim Barrett & Shannon Mann, Research In Motion

December 2007

Abstract
Research In Motion (RIM) has completed a 9 month project that resulted in improving the
performance of Perforce by over 10x. The Project team worked with Perforce Technical Support,
peer companies and internal resources to develop and execute a comprehensive project that
addressed infrastructure and application issues. The team surpassed that goal of a 75%
improvement in performance and has delivered over 90% improvement in performance.

This paper discusses the major and minor initiatives included in RIM’s performance project along
with key ways of measuring performance.

Introduction
Research In Motion (RIM) is a world leader in the mobile communications market and has a
history of developing breakthrough wireless solutions. RIM's portfolio of award-winning products,
services and embedded technologies are used by thousands of organizations around the world
and include the BlackBerry(tm) wireless platform, the RIM Wireless Handheld(tm) product line,
software development tools, radio-modems and software/hardware licensing agreements.

RIM has a large and rapidly growing Perforce server. In late 2006, the performance of Perforce
was a growing concern across the Software organization and a Project Team was assembled
with the responsibility to fix all performance issues related to Perforce.

Starting Infrastructure
In January 2007, RIM was operating the following configuration:

Hardware: SunFire V890with 8 dual SPARC IV (1.35Ghz), RAM = 32GB (12% file cache)
OS: Solaris 9
Software: Perforce server 2005.2, multiple GUI levels (mostly versions of P4WIN)
of Users: 1,950

Baseline Performance
Before the project began, performance was measured based on the number of processes
executing at a given time. Monitoring tools were used to count the number of processes
executing every 5 minutes. These tools highlighted performance issues after they had affected
the main server.

Table 1: Number of processes executing at a time in Perforce. Measured Mon – Fri, 10:00am –
5:00pm.

 Average Median Maximum Minimum
Apr 17 – 20 60 49 217 17
Apr 23 – 27 60 53 227 11
Two week Average 60 51 222 14

Diagram 1: Number of processes executing at a time in Perforce. Measured every 5 minutes on
April 26, 2007.

Number of Processes Executing

0

50

100

150

200

250

0
:0

3

0
:5

8

1
:5

3

2
:4

8

3
:4

3

4
:3

8

5
:3

3

6
:2

8

7
:2

3

8
:1

8

9
:1

4

1
0
:0

8

1
1
:0

3

1
1
:5

8

1
2
:5

3

1
3
:4

8

1
4
:4

3

1
5
:3

8

1
6
:3

3

1
7
:2

8

1
8
:2

3

1
9
:1

8

2
0
:1

3

2
1
:0

8

2
2
:0

3

2
2
:5

8

2
3
:5

3

Time (HH:MM)

#
 o

f
p

ro
c
e
s
s
e
s

Apr 26

The Project Team developed a method to measure server response times that was more
indicative of a developer experience. The team built a script to execute 5 processes every 15
minutes. The lapse time from the start of the first process to the end of the last process was
recorded and tracked. This method of measuring performance still highlighted issues after they
had affected the main server, but, it also provided a method to measure the scale of the impact.
The 5 processes executed were:

o p4 info > /dev/null
o p4 print -q //depot/swdocs/pub/hasty_guides/usage.pdf > /dev/null
o p4 fstat //depot/swdocs/pub/hasty_guides/usage.pdf > /dev/null
o p4 dirs //depot/vendor/* > /dev/null
o p4 sync -f //depot/admin/announcements/... > /dev/null

Table 2: Average weekly lapse times of the 5 test processes. Measured from 9:00am to 6:00pm
EST, Mon-Fri

 Average Median Maximum Minimum

Apr 3 – 5 4.7s 1.4s 49.0s 0.9s

Apr 9 – 13 8.7s 3.2s 89.1s 0.9s
Apr 17 – 20 18.1s 5.0s 209.6s 0.7s

Apr 23 – 27 14.4s 5.9s 123.2s 0.7s

Monthly Average 12.2s 4.1s 125.3s 0.8s

Diagram 2: Individual lapse times of the 5 test processes for the week of April 23 – 27

Lapse Time of 5 Sampe Processes

0:00:00

0:00:17

0:00:35

0:00:52

0:01:09

0:01:26

0:01:44

0:02:01

9:
00

9:
30

10
:0
0

10
:3
0

11
:0
0

11
:3
0

12
:0
0

12
:3
0

13
:0
0

13
:3
0

14
:0
0

14
:3
0

15
:0
0

15
:3
0

16
:0
0

16
:3
0

17
:0
0

17
:3
0

18
:0
0

Time (HH:MM)

L
p

a
s
e
 t

im
e
 (

H
:M

M
:S

S
)

Apr 23

Apr 24

Apr 25

Apr 26

Apr 27

Performance Targets
While the mandate for the Project Team was clear, “Improve performance for the developers”, the
team needed concrete performance targets. After considering the scale and distribution of the
historical performance issues, the targets were set as:

Deliver a 75% improvement in performance measured using the average lapse times of
the 5 test processes Monday to Friday, 9:00am to 6:00pm EST.

In other words, the average lapse times of the 5 test processes must be below 4 seconds,
adjusted for growth, in order for the project to be considered a success.

Project Priorities
The Project Team engaged Perforce Technical Support early in the project life cycle to help
identify potential sources of improvement. In addition, the Project Team engaged other large
users of Perforce looking for solutions implemented at their organizations. The expectation of the
Project Team was that, while RIM was a unique organization, the Perforce performance problems
were not unique and were experienced by other organizations. The Project Team decided to take
the early direction from other people who experienced and dealt with the performance issues
while investigating our own environment for unique issues. The list of potential solutions was:

1. Stop commands that are known to cause problems
2. Upgrade RAM from 32GB to 64GB
3. Upgrade server version from 2005.2 to 2006.2
4. Move from Sparc/Solaris to Opteron/Linux
5. Move from SAN storage to DAS storage
6. Optimize the Protection table
7. Upgrade Client GUI’s to current level
8. Implement a RamSan for the metadata

The Project Team set priorities based on expected improvement and elapsed time required to
implement each solution.

Performance Analysis
The causes of performance issues with Perforce is well known and has been discussed at
previous user conferences. The RIM Project Team spent time throughout the project to
understand the nature of the database locking problem in order to be able to duplicate the
problem in a test environment.

The nature of the problem is the inter-table locking that occurs between read commands and
write commands. The problem is not related to a single command, but the interplay of multiple
commands. When a command is reading information from a table, it holds a shared lock which
allows other reads to also access the table. If a command needs to write to a table, the
command holds an exclusive lock so that no other command can access the table at the same
time. The database locking problem occurs when a long read command is followed by a write
command. The read command places a shared lock on the table. The write command must wait
for the read to finish before it can have its exclusive lock on the table. Since Perforce requests
locks for commands in the order they are received, all other commands must wait for both the
read command to finish and the write command to finish.

The example below depicts the locking issue with one table. However, Perforce has over 40
tables and most commands utilize multiple tables, some commands requiring all locks before
proceeding. In a worst case scenario, a long read command blocks a write command that is
holding exclusive locks on multiple tables. This combination of locks is the essence of the cross-
table lockjam problem that can effectively turn Perforce into a single-threaded application.

Diagram 5: Table locking issue with Perforce
TIME 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

LEGEND

Process is holding a read lock

Process is holding a write lock

Process is waiting to do a read

Process is waiting to do a write

The Project Team created a test scenario that duplicates the table locking issue. This test has
enabled the Project Team to duplicate the major performance problem RIM experiences to
determine if changes address the issue. The test developed by RIM is:

• Execute 10 submits of 10,000 files each in parallel

• At the same time, execute a spinning integrate of 10,000 files
• An at the same time, execute a spinning FSTAT of all files

Major Initiatives: Memory Upgrade

RIM was operating servers with 32GB’s of RAM. Based on advice from Perforce and from
another peer company, it was determined that RIM required at least 64GB of RAM. The
calculation used by Perforce was:

1. RAM should be 32MB per user or
2. RAM should be 1.5KB per file

The Project Team executed a series of tests, first with 32GB of RAM, followed by 64GB of RAM.
In addition, different levels of file cache (setting segmapsize from 12% to 50%) was tested to
determine if any performance improvement existed with higher file cache amounts. The testing
results showed an average speed improvement of 11% with 64GB/segmapsize =50% and that
file cache changes did make a big difference in performance.

The memory was upgraded in Production on April 29, 2007. The performance improvement in
production was immediately apparent during the early morning hours when little activity occurred
on the Perforce server. The average lapse times from 2:30am to 7:00am dropped from
1.2seconds to 1.1seconds, an improvement of 8%. Minimum lapse times of the 5 test processes
also dropped from 0.73 seconds to 0.55 seconds, an improvement of 24%. Unfortunately, the
user count increased significantly at the same time and the improvement was not enough to
compensate for the increase in volume.

Diagram 4: Minimum lapse times of the 5 test processes from2:30am to 7:30am before and after
the memory upgrade

Min Lapse Times of 5 Test Processes

2:30am - 7:30am EST

00:00.00

00:00.09

00:00.17

00:00.26

00:00.35

00:00.43

00:00.52

00:00.60

00:00.69

00:00.78

00:00.86

Apr

17

Apr

18

Apr

19

Apr

20

Apr

21

Apr

23

Apr

24

Apr

25

Apr

26

Apr

27

Apr

28

Apr

30

May

1

May

2

May

3

May

4

May

5

May

7

May

8

May

9

May

10

Date

L
a
p

s
e
 T

im
e
s
 (

H
:M

M
:S

S
)

Memory Upgrade

Major Initiatives: Server upgrade from 2005.2 to 2006.2
RIM had started experiencing performance issues shortly after upgrading to server version
2005.2 in May 2006. The suspicion was that the degradation of performance related to the
upgrade of the server version along with other RIM incurred changes within our development
process. Again, on the advice from Perforce, the Project team evaluated the server version

2006.2. The major performance improvements included in the upgrade were changes to p4
integrate (version 2006.1) and p4 submit (version 2006.2).

In a QA environment, a series of commands were executed multiple times and durations were
analyzed to compare the speed of the two server versions. Of the nine types of commands
tested, 6 were noticeably faster, but three commands were actually slower with the new version
of the server software. The Project team worked with Perforce and was unable to determine why
these three commands executed consistently slower with version 2006.2.

Table 3: Average durations in QA to compare lapse times of the server version 2005.2 and
2006.2.

 Version 2005.2 Version 2006.2 Variance

DIRS 329s 64s 80.5%
FILES 165s 161s 2.4%

INTEGED 4347s 4121s 5.2%

LABELS 95s 85s 10.5%
SUBMIT 7335s 2246s 69.4%

SYNC 850s 666s 21.6%

CHANGES 176s 185s -4.9%
FSTAT 252s 267s -5.7%

OPENED 38s 44s -14.1%

The upgrade in production was completed on May 20,2007 and the result was immediately
noticed by the Developers. Locking issues that used to affect the main depot for over 5 minutes
at a time were eliminated with the most significant issues locking the main server for no more
than 2 minutes. Below are two charts that track the daytime lapse time of the 5 test processes
the week before the upgrade and the second week after the upgrade

Diagram 4: Individual lapse times of the 5 test process before the server 2006.2 upgrade (May
14, 2007 – May 18, 2007)

00:00.0

00:17.3

00:34.6

00:51.8

01:09.1

01:26.4

01:43.7

02:01.0

02:18.2

9:
00

9:
30

10
:0

0

10
:3

0

11
:0

0

11
:3

0

12
:0

0

12
:3

0

13
:0

0

13
:3

0

14
:0

0

14
:3

0

15
:0

0

15
:3

0

16
:0

0

16
:3

0

17
:0

0

17
:3

0

18
:0

0

May 14

May 15

May 16

May 17

May 18

Diagram 5: Individual lapse times of the 5 test processes after the server 2006.2 upgrade (May
28, 2007 - June 1, 2007)

00:00.00

00:17.28

00:34.56

00:51.84

01:09.12

01:26.40

01:43.68

02:00.96

02:18.24

9:
00

9:
30

10
:0

0

10
:3

0

11
:0

0

11
:3

0

12
:0

0

12
:3

0

13
:0

0

13
:3

0

14
:0

0

14
:3

0

15
:0

0

15
:3

0

16
:0

0

16
:3

0

17
:0

0

17
:3

0

18
:0

0

May 28

May 29

May 30

May 31

June 1

Major Initiative: Opteron Update
RIM was utilizing SunFire V890 servers with Solaris 9 and approached the recommendation by
Perforce to switch to Opteron/Linux with suspicion. At the 2007 User Conference in Las Vegas,
the Project Team confirmed with many other large users of Perforce that Opteron/Linux
combination was superior to Sparc/Solaris combination in terms of Perforce performance. The
Project Team proceeded to compare the following hardware/OS configurations:

Current Hardware:
SunFire V890 with 8 dual SPARC IV (1.35 Ghz) CPU, 64GB RAM, Solaris 9

New Hardware:
SunFire x4600, 8xAMD Opteron model 8220 processor (2.86Ghz dual-core), 128 GB RAM, Linux
(RHEL4, update5)

The test results in the QA environment confirmed the information the Project Team had received
from Perforce and other large users of Perforce. In the QA environment, Opterons/Linux out-
performed Sparc/Solaris and the performance improvements ranged from 62% to 98%.

Table 4: Lapse times from Sparc/Solaris vs Opteron/Linux tests

Test Type Sparc/Solaris Opteron/Linux Improvement

Lock Test: Created a program to create 20
files, cycle through locking them 2,000,000
times

4m6s 39s 84%

Populate Test: Created script to create
100,000 files (6.4K each). Submitted all
files in one changelist

2h14m51s 38m8s 72%

Integrate Test: Integrate files submitted in
populate test into a different directory

29m54s 31s 98%

Submit Integrate Test: Submit changelist
created in integrate test

1m3s 17s 73%

Rebuild from Checkpoint 4h40m 1h45m 62%
Checkpoint Test 8h31m 1h20m 84%

Average Improvement 79%

The new Opteron servers were implemented into production on Sept 23, 2007 and the result was
immediate. For the first time since the project began, Perforce performance was no longer an
issue and positive comments were received from many different users. The RIM Perforce
environment was able to effectively handle the high volume of traffic without incurring any lengthy
lock problems. Below are the average lapse times of the 5 sample processes for the 5 weeks
prior and 5 weeks after the upgrade to Opteron/Linux.

Diagram 6: Average weekly daytime duration of the 5 test processes

Average lapse time of 5 test processes

M-F 09:00-18:00

00:00.0

00:04.3

00:08.6

00:13.0

00:17.3

00:21.6

00:25.9

00:30.2

00:34.6

JUL 30-

3

AUG 7-

10

AUG

13-17

AUG

20-24

AUG

27-31

SEP 4-

7

SEP

10-14

SEP

17-21

SEP

24-28

OCT 1-

5

OCT 9-

12

OCT

15-19

OCT

22-26

L
a
p

s
e
 T

im
e
 (

M
M

:S
S

.0
)

Average Lapse Time of 5 sample processess

In addition, the increased speed has allowed a higher number of processes to be executed on a
daily basis. Average number of processes completed during a typical business day increased by
an average of 8% after the switch to the Opteron CPUs.

Major Initiative: Read-only Replica
Volume of activity on the main Perforce Server at RIM is a growing concern. RIM is adding a
significant number of users every few months and the trend is expected to continue into the near
future. In addition, explosion of products and new processes has increased the number of builds
performed on a regular basis. The Project Team investigated Perforce usage and determined
that various build activity executed daily accounted for over 60% of the volume on Perforce. In
fact, the top 15 accounts (all build activity) accounted for over 98% of the daily ‘p4 sync’
commands. The ‘p4 sync’ command is a top suspect for creating the perfect environment for the
database locking issue with Perforce describe in section Performance Analysis (Diagram 3).

Based on advice from a number of large users of Perforce, RIM investigated implementing a
read-only replica of the main server to offload all build activity. RIM tested a solution from
Perforce (p4 jrep), along with advice from a peer company, and set up a replica server. The
server utilizes the ‘p4 jrep’ script to replay the journal file to the read-only replica. RIM modified
the script to avoid copying key tables to the mirror that were needed to control the use of the
mirror (such as the DB.HAVE table).

RIM is now in the process of moving all build activity from the main server to the read-only replica
server.

Major Initiative: RamSan Solid State Disk

At the 2007 user conference, one company reported success with a RamSan unit for addressing
performance concerns for large Perforce customers. Another peer company installed similar
technology in the summer of 2007 and also reported significant gains in performance. This
information prompted the Project Team to evaluate a RamSan Solid State disk (128GB) unit. The
strategy was to test the unit against local disk and our production array. A series of low-level
tests were compiled along with the cross-table lockjam test described in the Performance
Analysis section of this document. The end result is that, while the RamSan solid state disk
showed measurable improvement in the low-level testing, the real world application testing did
not show any measurable improvement. It is the opinion of the Project Team that our
environment is currently optimized and that the current disk access speed is not a bottleneck.
The Project Team has plans to implement a RamSan unit when volumes increase to the point
where performance begins to suffer.

Table 5: RamSan Low-Level test results

 Local Disk (SCSI Raid

O)
SUNSAN Array 9985 RamSan 128GB

#DD (Disk Dump) 335.974s 36.409s 68.895s
Copy of 24GB file 310.593s 189.469s 177.357s
#IOTMS avg IOPS 620 iops 1261 iops 7288 iops
#Locktest 9.092s 9.350s 8.178s

Table 6: RamSan Real-world testing

 SUNSAN

Array 9985
RamSan
128GB

RamSan
128GB – with

cache

Local Disk Local Disk –
with cache

Serial Add 46.21s 43.85s 96.07s 52.25s 49.96s
Parrallel Add 1638.08s 1732.95s 1605.71s 1921.14s 1709.06s
Avg FSTAT 2.8s 2.95s 2.56s 3.1s 3.05s
Total 2392.74s 2459.48s 2893.78s 2879.82s 2624.61s

Minor Initiatives:

The Project Team also completed many minor initiatives to address the performance concerns.

“Kill” Orphaned processes
RIM Perforce server had the number of orphaned processes grow every day. These processes
were complete from the GUI perspective, but, not from the server perspective and they muddied
the performance monitoring results. The Project team created a script that would kill any process
that had been executing for over 2 hours. It was not proven if this action improved performance
of the main server.

Rebuild from Checkpoints
The Project Team completed a series of Rebuild from Checkpoints to rebuild the indexes and
improve performance. While RIM was operating server version 2005.2, the occasional Rebuild
from Checkpoint provided temporary improvements lasting 2 to 5 business days. However, after

RIM moved to server version 2006.2, no improvement was measured on subsequent Rebuilds
from Checkpoints.

Optimize Protection Table
RIM had a protection table that included a number of exclusion entries and wildcards. After the
Perforce Conference in Las Vegas, May 2007, the Project Team used the information from
Michael Shields presentation to optimize the protection table. The improvements were done a
few at a time over the period of two months which made measuring performance improvements
from the changes impossible.

Log Parser
To thoroughly understand and manage the use of Perforce, the Project Team developed a log
parser along with a reporting database. The Log Parser allows the capture of all relevant
information from the log files for reporting and analysis. The database is now used to investigate
performance situations, report statistics and monitor user behaviours.

Upgrade GUI versions
The Project Team utilized the new log parser to determine which users were executing old GUI
versions. It was determined that over 60% of the users were using versions below our
recommended level. Perforce has stated that some of these old versions had known
performance problems and were causing some of our issues. The Project Team began a
process of identifying users with old GUI versions and worked with these Users to upgrade to the
recommended GUI version. An install package was created that allowed Users to easily upgrade
Perforce. This package prevents Users from installing P4 EXP and also set key options within
Perforce to help optimize the performance.

Limit the scope of Clientspecs
The Project Team determined through various analysis techniques that there were instances of
Users “syncing” the entire depot that impacted performance for all of the Users. At these times,
the commands placed very long read locks on key tables in the metadata and effectively blocked
the rest of the users for up to 20 minutes. The Project Team developed a trigger that now
prevents users from mapping the entire depot at one time. Users are now forced to select down
at least one layer from the top of the tree to reduce the accidental syncing of the entire depot.
Since this trigger has been in place, there have been no instances of the depot being locked for
20 minutes at a time and the trigger prevented 5 Users from syncing the entire depot in just the
first few weeks.

Local Proxy Investigation
One team was utilizing a local proxy to improve performance for their group. The Project Team
investigated the local proxy and was able to prove that the local proxy not only did not help
performance, it actually slowed down performance for the group using the proxy. The only real
benefit from the proxy was isolating the activity of these Users from some of the previous volume
reporting tools. The group has now stopped using a local proxy. Proxies are still used by all
remote locations using Perforce.

Reducing FSTAT
Volume is one of the factors which affect performance. The Project Team analyzed the type of
activity looking for excessive use of the depot. Through the analysis, it was determined that
some users were polling the depot for changes every second. This meant an excessive amount
of FSTAT commands that provide the right conditions for the database locking issue. The Project
Team worked with users to change polling to more appropriate times to reduce the load due to
the FSTAT command. In addition, changes were implemented into our LAN desk install package
to turn off the automatic polling option.

Divide the Depot

The Project team investigated and started the process to split our depot along functional lines.
The process involved taking two exact copies of the depot and obliterating alternate part of both
depots. The test obliteration process lasted over 15 consecutive days and eventually corrupted
the test depot. This option was abandoned for numerous reasons:

1. It was not clear that this alternative would solve all of the performance issues
2. Key functionality and re-use of code would be lost
3. Process of dividing the depot was not stable or efficient
4. Interfacing tools were not able to support multiple depots

Archive Old Version Files
The Project Team investigated archiving files older than a key date in the past. The assumption
was if the size of the depot was smaller, performance would be improved. At the 2007 User
Conference, this solution was discussed with Perforce and other companies and Perforce
expressed interest in addressing the archiving of older files as part of their solution. Therefore,
this option was placed on hold to allow time for Perforce to propose a solution.

Conclusion

RIM has successfully addressed the performance concerns with Perforce with the average lapse
time of the 5 test processes averaging below 3 seconds (a 90% improvement). At the same time,
the Perforce user base has continued to expand and volume has increased. With the ever
growing volume, the work required to keep Perforce operating at top speed will never be
complete. The Project team is already looking at new initiatives that are in various stages of
development that will provide further improvements.

The most important measure for the success of the performance project are the comments
received directly from the Developers. Below are a few quotes received after the latest changes
which clearly show the success of the performance improvements:

“Wow, the depot is fast now.”
“I think you’re going to have a lot of happy developers - this one included”
“I’ve never seen Perforce perform this well! Great job guys!”
“I was just using Perforce and... it’s fast. Really fast. I love it.”

