
SCM Dashboard
Monitoring Code Velocity at the Product /
Project / Branch level

Prakash Ranade

AGENDA

•  What is SCM Dashboard?
•  Why is SCM Dashboard needed?
•  Where is it used?
•  How does it look?
•  Challenges in building SCM Dashboard
•  Goals in designing SCM Dashboard
•  Technology in building SCM Dashboard
•  Conclusion

What is SCM Dashboard?

•  A framework for organizing, automating, and analyzing
software configuration methodologies, metrics, processes, and
systems that drive product release performance.

•  The Dashboard gathers, organizes, and stores information
from various internal data sources and displays metrics that are
the result of simple or complex calculations with minimal
processing time.

•  Decision support system that provides historical data and
current trends in its portlet region, showing metrics/reports side-
by-side on the same web page.

Why is SCM Dashboard needed?

You are not able to manage what you can not measure.

•  The Dashboard is an easy way to enhance visibility on the
product releases, such as showing how you do compared to
previous performances, goals and benchmarks.

What gets watched, will get done.
•  Ability to make more informed decisions based on multiple reports.

Not only for the executives, but for all levels of engineering.
•  Release Manager, Director
•  Development, QA Manager,
•  Developer, QA

Who needs metrics?

Type of
files, lines,
change, file

churn

Bug trends,
Perforce
Trends

Dev

Bug fixes,
changes,
depot churn QA

Dev
Manager

Director

Bug fixes,
branch

stability reports

QA
Manager

SCM
Dashboard

Team

How does it look?

How does it look?

Data challenges

SB, TB, OB
Systems

Has gone through
multiple

transformations. No
initial values were

recorded. Some fields
have multiple values.

Above 3 million changes, more than 5000
branches, and an archive consisting of 2 TB

data.

Multiple Build
Environments

Complex
Bugzilla data

Large Perforce
Repository

Dashboard Goals

Speed

•  Max. 5 seconds
response time for the
requests

•  Provides frequent, or
at least daily, updates

•  Bases project status
on incremental data
updates

Sharing

•  Social Engineering
•  Easy to share charts

and reports among
team members

•  Easy to make project
dashboards

Portal

•  Ability to configure
multiple metrics on a
single page.

•  Ability to fine tune
settings and filters on
charts and reports.

•  Ability to drill downs
and form
aggregations.

Building blocks

An Architecture based on Hadoop and MongoDB

•  Hadoop is a open-source software used for breaking a big job
into smaller tasks, performing each task and collecting the results.
•  MapReduce is a programming model for data processing,
working by breaking the processing into two phases, a map phase
and a reduce phase.
•  Hadoop streaming is a utility that comes with the distribution,
allowing you to create and run MapReduce jobs in Python.
•  The HDFS is a filesystem that stores large files across multiple
machines and achieves reliability by replicating the data across
multiple hosts.
•  MongoDB is a document based database system. Each document
can be thought of as a large hash object. There are keys(columns)
with values which can be anything such as hashes, arrays,
numbers, serialized objects, etc.

Perforce Branch:

Our Perforce branch exists on multiple perforce servers. Our branch
specification looks like this.

•  server1:1666
 //depot/<component>/<old-branch>/! //depot/<component>/<new-branch>/!

•  server2:1666
 //depot/<component2>/<old-branch>/! //depot/<component2>/<new-branch>/!
 //depot/<component3>/<old-branch>/! //depot/<component3>/<new-branch>/!

•  server3:1666
 //depot/<component4>/<old-branch>/! //depot/<component4>/<new-branch>/!

Branch policies

•  Branch Manager identifies and lists new feature/bugs, improvements in
Bugzilla and Perforce BMPS, and then sets the check-in policies on the
branch and change specification forms.
Change 1359870 by pranade@pranade-prism1 on 2011/04/27 17:31:36
 Implement Prism View...
 QA Notes:
 Testing Done: Perforce Create, Update, delete view
 Bug Number: 703648, 703649
 Approved by: daf
 Reviewed by: gaddamk, akalaveshi
 Review URL: https://reviewboard.eng.vmware.com/r/227466/
 #You may set automerge requests to YES|NO|MANUAL below,
 #with at most one being set to YES.
 Merge to: MAIN: YES
 Merge to: Release: NO

Affected files ...

... //depot/component-1/branch-1/views.py#12 edit
... //depot/component-1/branch-1/templates/vcs/perforce.html#15 edit
... //depot/component-1/branch-1/tests.py#1 add
... //depot/component-1/branch-1/utils.py#14 delete

Differences ...

Perforce Data collection

•  “p4 describe” displays the details of the changeset, as follows:
The changelist number
The changelist creator name and workspace name
The date when the changelist created
The changelist’s description
The submitted file lists and the code diffs

•  We have a Perforce data dumper script which connect to
perforce servers and dumps the “p4 describe” output of the
submitted changelist.

•  The Perforce data dumper script dumps output in 64 MB file
chunks, which are then copied to HDFS.

MapReduce

•  We have a Perforce data dumper script which connect to perforce
servers and dumps the “p4 describe” output of the submitted
changelist. Each MapReduce script scans all the information from a
“p4 describe” output. The following reports can be created by writing
different MapReduce scripts:

 Number of submitted changes per depot path

 File information like add, edit, integrate, branch, delete

 File types such as “c”, “py”, “pl”, “java”, etc.

 Number of lines added, removed, modified

 Most revised files and least revised files

 Bug number and bug status

 Reviewers and test case information

 Change submitter names and group mapping

 Depot path and branch spec mapping

Python MapReduce

•  MapReduce programs are much easier to develop in a scripting
language using the Streaming API tool. Hadoop MapReduce provides
automatic parallelization and distribution, fault-tolerance, and status
and monitoring tools.

•  Hadoop Streaming interacts with programs that use the Unix
streaming paradigm. Inputs come in through STDIN and outputs go to
STDOUT. The data has to be text based and each line is considered a
record. The overall data flow in Hadoop streaming is like a pipe where
data streams in through the mapper and the sorted output streams out
through the reducer. In pseudo-code using Unix’s command line
notation, it comes up as the following:

 cat [input_file] | [mapper] | sort | [reducer] > [output_file]

Process

• p4 server A
• p4 server B
• p4 server C

p4
describe

• MapReduce
• MapReduce

hadoop

• changes
• lines
• files
• users

mongoDB

Split files
of p4
describe

64 MB file
size

Split files

!"#$%&'()*+)
(',-.%$')"/0*/0)
1."#)233),'.4'.,)
%&)5+67-8/&9,

!"#
$%&'(% #"$)*+,

!"#$%&'()*$&'(
+*,&'(-'&.'(/
0"1.$/
2&3#4#3#

:2(""*)
;2.233'3%,#)
<&():=>?

?-8'#23',,@)
="-/#'&0)
?0".2A')
?B,0'#

!"#

!"#

!"#

!"#

$%&'(%

$%&'(%

#"$)*+-

#"$)*+.

def dump_to_reducer(srvr, chng, depotfiles):
 if srvr and depotfiles and chng:
 for filename in depotfiles:
 print "%s|%s\t%s" % (srvr, filename, str(chng))

 def main():
 chng, depot_files, l = 0, set(), os.linesep
 p4srvr = site_perforce_servers(site.perforce_servers)
 for line in sys.stdin:
 line = line.rstrip(l)
 if line and line.count('/')==80:
 srvr = match_begin_line(line, p4srvr)
 if srvr:
 chng, depot_files = 0, set()
 continue
 if line and line.count('%')==80:
 srvr = match_end_line(line, p4srvr)
 if srvr:
 dump_to_reducer(srvr, chng, depot_files)
 continue
 if line and line[0:7]=='Change ':
 chng = dtgrep(line)
 continue
 if line and line[0:6]=='... //':
 flgrep(line, depot_files)

def main():
 depot2count = {}
 final_changes = {}
 for line in sys.stdin:
 try:
 p4srvr_depotpath, date_chng = line.split('\t',1)
 except:
 continue
 if (not p4srvr_depotpath) and (not date_chng):
 print >> sys.stderr, line
 continue
 dt, change = date_chng.split('.')
 change = change.rstrip(l)
 depot_hash = depot2count.setdefault
(p4srvr_depotpath,{})
 depot_hash.setdefault(dt,0)
 chng_set = depot2count[p4srvr_depotpath][dt]
 depot2count[p4srvr_depotpath][dt] = int(change)
 for (p4srvr_depotpath, dt) in depot2count.items():
 for (dt, chngset) in dt.items():
 print json.dumps
({'p4srvr_depotpath':p4srvr_depotpath, 'date': dt,
'changes': chngset})

Python
Reducer script

Python
Mapper script

 mdb = mongo_utils.Vcs_Stats(collection_name="depot_churn")

 mdb.collection.create_index([('p4srvr_depotpath', pymongo.ASCENDING), ('date',
pymongo.ASCENDING)])

 for line in datafile.readlines():
 data = json.loads(line)
 p4srvr_depotpath = "%s" % data['p4srvr_depotpath']
 dstr = data['date']
 yy, mm, dd, hh, MM, ss = dstr[0:4], dstr[4:6], dstr[6:8], dstr[8:10], dstr[10:12], dstr
[12:14]
 changes = data['changes']
 new_data = []
 mongo_data = {'p4srvr_depotpath':p4srvr_depotpath,

 'date‘:datetime.datetime(yy,mm,dd,hh,MM,ss),
 'changes':changes, '_id':"%s/%s:%s"%
(p4srvr_depotpath,dstr,changes)}
 mdb.collection.insert(mongo_data)
 mdb.collection.ensure_index([('p4srvr_depotpath', pymongo.ASCENDING), ('date',
pymongo.ASCENDING)])

mongodb
upload script

/* 0 */
{
 "_id": "perforce-server1:1666|//depot/component-1/branch-1/20110204005204:1290141",
 "date": "Thu, 03 Feb 2011 16:52:04 GMT -08:00",
 "p4srvr_depotpath": "perforce-server1:1666|//depot/component-1/esx41p01-hp4/",
 "changes": 1290141,
 "user": "pranade",
 "total_dict": {
 "all": "9",
 "branch": "9"
 }
}
/* 1 */
{
 "_id": "perforce-server1:1666|//depot/component-2/branch-2/20100407144638:1029666",
 "date": "Wed, 07 Apr 2010 07:46:38 GMT -07:00",
 "p4srvr_depotpath": "perforce-server1:1666|//depot/component-2/branch-2/",
 "changes": 1029666,
 "user": "akalaveshi",
 "total_dict": {
 "edit": "3",
 "all": "3"
 }
}
/* 2 */
{
 "_id": "perforce-server1:1666|//depot/component-2/branch-2/20100106003808:976075",
 "date": "Tue, 05 Jan 2010 16:38:08 GMT -08:00",
 "p4srvr_depotpath": "perforce-server1:1666|//depot/component-2/branch-2/",
 "changes": 976075,
 "user": "pranade",
 "total_dict": {
 "integrate": "10",
 "edit": "2",
 "all": "12"
 }
}

mongodb data

Conclusion

•  We have designed a framework called SCM Dashboard.

•  “p4 describe” command contains most of the information.

•  Hadoop: horizontally scalable computational solution.
Streaming makes MapReduce programming easy.

•  Mongodb: Document model, dynamic queries, comprehensive
data models.

QUESTIONS?

