
Image Placeholder for Dark Image

© Perforce Software, Inc. All trademarks and registered trademarks are the property of their respective owners. (0120NL25)

W H I T E P A P E R

Streams Adoption Guide
Easier Branching and Merging with Helix Core

Executive Summary
Perforce Streams is the branching feature within Helix Core version control. It’s a better way to branch and merge. It makes it easier

to manage concurrent development, dependencies, and other common branching and release activities. It provides projects with a

workflow framework based on best practices. Plus, it is flexible enough to accommodate many branching strategies and develop-

ment models, including the mainline branching model. Streams is both lightweight and powerful. This superior model eliminates

obstacles for developers and increases productivity.

The audience for this document is Helix Core administrators, architects, and development/engineering leadership. If you are a longtime

Helix Core customer, making the switch to Streams is worth exploring.

Moving an existing project into Streams requires some planning. It is important to carefully examine the impact on users and other tools.

Learn more about its many benefits and review the Perforce Streams best practices below.

2

Streams Adoption Guide

© Perforce Software, Inc. All trademarks and registered trademarks are the property of their respective owners. (0120NL25)perforce.com

Contents

2................ Executive Summary

4................ �Understanding Perforce Streams

5................ �Move Existing Projects to Perforce Streams

6................ Analysis of Perforce Streams: What to Expect

9................ Conclusion

W H I T E P A P E RStreams Adoption Guide

3© Perforce Software, Inc. All trademarks and registered trademarks are the property of their respective owners. (0120NL25)perforce.com

Perforce Streams Composition and

Inheritance

Streams, like workspaces and branches, have views. A product

architect can use the stream view to define the set of modules or

components in a stream. In other words, a stream view defines

the purpose and origin of files, including:

•	 Files branched for work.

•	 Files imported or excluded from the parent.

•	 Files imported from other parts of the repository.

The stream view is inherited by all child streams and

workspaces, which simplifies the startup work for new

developers in projects. When a new user creates a workspace

from a stream, the workspace view is generated automatically.

Workspace views are also updated automatically when moving

from stream to stream.

© Perforce Software, Inc. All trademarks and registered trademarks are the property of their respective owners. MMYYIIYY

Understanding Perforce
Streams
Before reading this paper, it is helpful to understand Streams,

how they work, and their associated commands and tools.

We have several Streams videos available. Start with this quick

tutorial.

Next, use this paper to learn key concepts and to guide your

migration plan. To learn more, check out our Additional

Resources.

Dependence on Directory Structure

In most systems, a directory structure conveys important

contextual information about the intended use and relative

stability of its branches. For example, consider the Titan project,

which features a main branch and two release branches. A

common directory structure is shown in Figure 1. The REL

container directory indicates that the subdirectories are release

maintenance branches.

After moving the Titan project into Streams — and adding a

couple of new branches — the directory structure is flat (see

Figure 1).

Branch Strategies for Stability

According to the mainline model, a release stream follows a

particular flow-of-change pattern. This structure governs when

changes are merged back to the main branch. Before moving

to Perforce Streams, the REL container level in the Titan project

conveyed important information about the branches in that

container.

3

depot titan
Titan

DEV2.3

DEV2.4

MAIN

REL2.1

REL2.2

dev2.3 (dev2.3)

dev2.4 (dev2.4)

main (main)

rel2.1 (rel2.1)

rel2.2 (rel2.2)

rel2.3 (rel2.3)

Figure 1: Titan branches (L) and the Titan branches as streams (R).

The branches were release maintenance branches, implying a

higher level of stability than development branches or the main

branch. With Streams, this information is captured in the stream

meta-data. It is presented visually in the stream graph, which

is a visualization that is built into Helix Visual Client (P4V). See

Figure 2.

Figure 2: Stream graph conveys branch stability and the flow of change.

https://www.perforce.com/video-tutorials/mainline-model-tofu-scale
https://www.perforce.com/video-tutorials/mainline-model-tofu-scale

W H I T E P A P E RStreams Adoption Guide

4© Perforce Software, Inc. All trademarks and registered trademarks are the property of their respective owners. (0120NL25)perforce.com

Move Existing Projects to
Perforce Streams
Mechanically moving data into a Streams depot from an existing

project is straightforward. Although a detailed history import

(DHI) strategy could be used, in most cases it is not necessary.

You can simply integrate the tips of the relevant branches

into new streams. Helix Core tracks and respects the indirect

branching history between the newly created streams.

The following provides a high level overview for migration:

1.	 Define a new Streams depot for the project. Administrative

access is required.

2.	 Choose the relevant branches to copy into the Streams

depot. You have the option to include all branches or only

those that are still actively being used.

Perforce Streams Best Practices:

For each branch, define an equivalent stream. Start with the

mainline stream and keep in mind the following:

•	 Consider which types of streams to use. A mainline stream

is the main branch and there is usually only one mainline

per Streams depot. Release streams are assumed to be

more stable than the parent. Development streams are less

stable than the parent.

•	 Review the flow of change, which is defined by the Streams

type. Most development branches allow a bidirectional

flow of change, while release maintenance branches

usually do not accept changes from the parent.

•	 Choose stream names carefully. Stream meta-data captures

the most important information about a stream. Stream

depths allow architects to adjust the organization structure

for Streams. But formalizing a naming convention serves as

a powerful and easier method for referring to Streams and

their locations.

•	 Determine the implications of parent-child relationships

between Streams. Consider how you perform merges

between branches. For example, if you normally merge

bug fixes from oldest to newest and then merge through

to the mainline, you may want the oldest release to use

the next oldest as its parent. In a more advanced branch

model, an older 1.0 release receives bug fixes first,

followed by the 1.5 release, and then the main branch. See

Figure 3.

Figure 3: A more advanced branch model in the stream graph.

•	 Capture any relevant information about stream

composition in the stream views. This information may be

currently stored in a branch spec, or it may be implied.

For instance, the dev-db stream in Figure 3 imports two

modules from the integration stream, as shown in the

stream paths.

W H I T E P A P E RStreams Adoption Guide

5© Perforce Software, Inc. All trademarks and registered trademarks are the property of their respective owners. (0120NL25)perforce.com

Migrating Branches into Streams

Now you are ready to start moving your data into Perforce

Streams. Start by copying each branch from its original location

to the equivalent stream using the p4 copy command. For

example:

p4 copy -v //depot/Titan/MAIN/... //titan/

main/...

p4 submit –d “seeding Titan stream

mainline”

The revision graph for a file shows that its pre-streams history is

readily accessible. See Figure 4.

In most cases, merging between two streams will return results

similar to merging between two original branches. This is due

to the indirect history between the newly copied streams. Once

copied from their legacy location, the streams could change

moving forward. But their merge history will remain constant.

For example, say there is one bug fix waiting to be merged

from the Titan REL2.1 branch back to MAIN. After integrating

the current state of MAIN and REL2.1 into streams to show the

pending bug fix, run the command:

p4 integ -S //titan/rel2.1

In cases with more complex merge history, you should preview

any merge operations immediately after moving into Streams to

ensure that the results are as expected.

Analysis of Perforce Streams:
What to Expect
For most people, Perforce Streams will be easy and

straightforward to use. However, Streams are a departure from

classic branching strategies in Helix Core. Advanced training

and documentation should be provided for your teams. Review

and analyze how Streams may impact your users.

Benefits for Users

Streams provides a simplified workflow for:

•	 Workspace creation and management.

•	 Stream or branch creation.

•	 Merging using the merge-down/copy-up paradigm.

•	 Stream view management.

•	 In-place branching and fast workspace switching.

Learning the new workflow and commands is the main impact

for users. New workspaces, other tools, and scripts may need

to be updated. Users will need to understand the new directory

locations and the structure of their Streams.

����������������������������

��������������
������������������� ��������������
���
�������������������

����������������������������

��������������
���
���������������������������������
�������������������

��������������
	����������������

��������������������������

Figure 4: Revision graph showing pre-streams history of the Titan branch.

W H I T E P A P E RStreams Adoption Guide

6© Perforce Software, Inc. All trademarks and registered trademarks are the property of their respective owners. (0120NL25)perforce.com

Impact on Release and Project

Management

Perforce Streams simplifies many release management activities.

The flow of change is guided by the Streams framework, and

the stream view allows for dependency management and code

reuse. Build and release scripts and tools may need updating to

take advantage of these new features.

If your previous branching model was well-designed with

supporting scripts and tools, then the overall workflow will

feel familiar. An inefficient branch-and-release model will

become more visible in the Streams framework. Users may

find themselves working outside of the expected guidelines

frequently. Moving to Streams is a good opportunity to identify

and fix any problems in the legacy release model.

Planning Your Team’s Migration

Another important choice is how to migrate your many teams

and when to move them. Moving the entire organization over to

Perforce Streams at once simplifies some of the planning, since

legacy tools and processes can be retired. However, doing so

requires careful planning and management.

Transitioning your teams gradually after a successful pilot allows

for more time to develop new processes and tools. If there are

strong depedencies between the work done by different teams,

additional work will be required to ensure that teams can still

collaborate with those using Streams, and vice versa. Your

migration schedule may depend on the level of collaboration,

your release schedule, and other important milestones. It will

take time for each team to adapt to

new processes.

Review Branching Strategies for Each

Team

You may find that some teams should not move to Streams.

Teams that simply use Helix Core as a document repository and

perform little or no branching would not benefit. Parallel work

would also not benefit much from the Streams workflow.

Some teams may already have a comprehensive set of scripts

and tools in place to support their unique development

process. In this case, moving to Streams could prove disruptive.

Streams provides built-in workflows based on observed

best practices. If your needs are currently satisfied, you may

not realize any gains by changing your existing branching

strategies.

Managing Requirement Tools

There are many ALM tools that interact heavily with Helix Core:

code review tools, defect trackers, and continuous integration

engines all interface with Helix Core to some degree. Therefore

it is vital to analyze and understand how Perforce Streams could

potentially impact your toolchain in advance.

Any tool that relies on knowing and understanding the product

directory layout will need to be changed when you migrate to

Streams. The directory structure will be flat, so tools and scripts

cannot rely on the same directory conventions in use to convey

structural context. Perforce Streams captures the information

in a different way, so the tools that rely on this information must

account for this change.

Supported Releases for Perforce Streams

Transitioning to Streams should be done using the most recent

version of Helix Core, currently 2018.2 or higher. All clients,

APIs, and plugins should also be on the most recent and

supported release. Administrators will need to manage a server

upgrade and make sure that all affected users have appropriate

client software.

W H I T E P A P E RStreams Adoption Guide

7© Perforce Software, Inc. All trademarks and registered trademarks are the property of their respective owners. (0120NL25)perforce.com

Conclusion
This document details, at a very high level, some of the considerations involved when moving existing users and projects to Perforce

Streams. Planning and preparation are key to any successful process transition and moving to Streams is no exception, particularly if you

want to realize the potential productivity gains.

Learn More

For more information on Streams:

•	 Visit our website: perforce.com/streams

•	 Read articles on the Perforce Blog: perforce.com/blog

•	 The Perforce Directory Standard, which has good documentation on Perforce Streams best practices: info.perforce.com/PDS.html

For assistance on adopting or migrating to Perforce Streams, email consulting@perforce.com.

https://www.perforce.com/perforce/doc.current/manuals/p4guide/Content/P4Guide/chapter.streams.html
https://www.perforce.com/blog
http://info.perforce.com/PDS.html
mailto:consulting%40perforce.com?subject=

© Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (0120NL25)

W H I T E P A P E RStreams Adoption Guide

About Perforce

Perforce powers innovation at unrivaled scale. With a portfolio of scalable DevOps solutions, we help

modern enterprises overcome complex product development challenges by improving productivity,

visibility, and security throughout the product lifecycle.

Our portfolio includes solutions for Agile planning & ALM, API management, automated mobile &

web testing, embeddable analytics, open source support, repository management, static & dynamic

code analysis, version control, and more. With over 9,000 customers, Perforce is trusted by the world’s

leading brands, including NVIDIA, Pixar, Scania, Ubisoft, and VMware. For more information, visit

perforce.com.

Contact Us

perforce.com/support

https://www.perforce.com/contact-us

